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Introduction

The goal of the present manuscript is to consider the following question:

To what extent can the fundamental group of a Galois category be con-
structed in a canonical fashion which is independent of a choice of
basepoint?

Put another way, we would like to consider the extent to which the elements (consid-
ered, say, up to conjugation) of the fundamental group may be assigned canonical
names, or labels.

In §1, §2, we consider this issue from a very general point of view. That is to say,
we develop the general theory of “anabelioids” — i.e., “multi-Galois categories”
in the terminology of [SGA1]— with an eye to giving an answer to this question.
We use the new terminology “anabelioid”, partly because it is shorter than “(multi-
)Galois category”, and partly because we wish to emphasize that we would like to
treat such objects from a fundamentally different point of view — a point of view
partially motivated by Grothendieck’s anabelian philosophy (cf. [Groth]; Remark
1.1.4.1 below) — from the point of view taken in [SGA1]: Namely, we would like to
regard anabelioids as the primary geometric objects of interest, which themselves
form a category [i.e., not as a category containing as objects the primary geometric
objects of interest].

Our main result in §1, §2, is Theorem 2.4.3, which states that:

When an anabelioid possesses a “faithful quasi-core” (cf. Definition 2.3.1),
then its fundamental group may be constructed in a canonical fashion as
a profinite group.

The notion of a “quasi-core” is motivated partly by the notion of a “hyperbolic core”
(cf. [Mzk3]) and partly by the “Motivating Example” given below. The condition
for a quasi-core states, roughly speaking, that a certain “forgetful functor” from a
category of geometric objects equipped with some special auxiliary structure to the
category of the same geometric objects not equipped with this auxiliary structure
is, in fact, an equivalence. Indeed, this general pattern of considering such forgetful
functors which are, in fact, equivalences is an important theme in the present man-
uscript (cf. Definition 2.3.1, as well as Theorem 2.4.2). One elementary example
of this sort of phenomenon — which was, in fact, one of the main motivations for
the introduction of the notion of a “quasi-core” — is the following example from
elementary complex analysis:

Motivating Example: Metrics on Hyperbolic Riemann Surfaces. A
connected Riemann surface is called hyperbolic if its universal covering is biholomor-
phic to the upper half plane. An arbitrary Riemann surface will be called hyperbolic
if every connected component of this Riemann surface is hyperbolic. Let us write

Lochyp
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for the category whose objects are hyperbolic Riemann surfaces and whose mor-
phisms are étale morphisms [i.e., holomorphic maps with everywhere nonvanishing
derivative]. If X ∈ Ob(Lochyp) is a object of Lochyp, then we shall refer to the
metric on its tangent bundle determined by the standard Poincaré metric on the
upper half plane [which is biholomorphic to the universal covering of every con-
nected component of X] as the canonical metric on X. If f : X → Y is a morphism
in Lochyp, then we shall say that this morphism f is integral if the norm of its
derivative [when measured with respect to the canonical metrics on the tangent
bundles of X, Y ] is ≤ 1. Let us write

Lochyp
int ⊆ Lochyp

for the subcategory whose objects are the objects of Lochyp and whose morphisms are
the integral morphisms of Lochyp. Then it follows from the “theory of the Kobayashi
hyperbolic metric” that the natural inclusion functor

Lochyp
int ↪→ Lochyp

is, in fact, an equivalence. At a more concrete level, one verifies easily that the
essential substantive fact that one needs to show this equivalence is the well-known
Schwarz lemma of elementary complex analysis [to the effect that any holomorphic
function φ : D → C on the open unit disc D in the complex plane satisfying
φ(0) = 0, |φ(z)| ≤ 1 (for all z ∈ D), necessarily satisfies |φ′(0)| ≤ 1]. This lemma
of Schwarz in turn may be regarded as a formal consequence of the well-known
“maximum modulus principle” of elementary complex analysis.

From a category-theoretic point of view, the point of this example is that,
although the object of Lochyp determined by the upper half plane is by no means
a terminal object in Lochyp — i.e., a “core” (cf. the theory of [Mzk3]) — the fact
that the inclusion functor Lochyp

int ↪→ Lochyp is an equivalence serves to express,
in a rigorous mathematical fashion, the sentiment that, in some sort of “metric”
sense, the upper half plane “almost serves as a core” for Lochyp. It is this set of
circumstances that led the author to the introduction of the notion of a “quasi-
core”.

This example also suggests an interesting relationship between the notions
of uniformization and of canonical labels for elements of the fundamental group:
Namely, the Koebe uniformization theorem for hyperbolic Riemann surfaces gives
rise to “canonical labels” (up to an ambiguity arising from some sort of conjuga-
tion action) via 2 by 2 matrices since it induces an embedding of the topological
fundamental group of the Riemann surface into PSL2(R).

This leads us to the content of §3: In §3, we discuss the theory of §1, §2, in
the case of hyperbolic curves over p-adic and number fields. In this case, our main
result — Theorem 3.1.6 — states that:

If a non-proper hyperbolic curve over such a field is a “geometric core”
(i.e., a core as in [Mzk3]), then its associated anabelioid admits a faithful
quasi-core.
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This allows us to assign “canonical names” to the elements of its arithmetic
fundamental group in a fashion reminiscent of the way in which the Koebe uni-
formization theorem allows one to assign “canonical names” to the elements of the
topological fundamental group of a hyperbolic Riemann surface. This main result
is, in essence, a formal consequence of Theorem A of [Mzk6], and may be regarded
as an interpretation of the main result of [Mzk9], §2, via the geometry of anabelioids.

Acknowledgements: I would like to thank A. Tamagawa for countless stimulating
discussions concerning the theory presented in this paper and especially for his com-
ments concerning the theory of quasi-cores and intrinsic exhaustivity (cf. Remarks
2.3.6.2, 2.3.7.1 in the text). Also, I would like to thank T. Tsuji for pointing out
to me (cf. [Mzk2], §1) an error in [Mzk1], Chapter IX — an event which opened
my eyes to the importance (in the context of the arithmetic Kodaira-Spencer mor-
phism) of keeping track of basepoints. Finally, I would like to thank H. Nakamura for
organizing a conference on arithmetic fundamental groups at RIMS, Kyoto Univer-
sity, in October 2001, at which the author was afforded the opportunity to present
a “preliminary version” (cf. [Mzk7]) of the ideas exposed in the present paper.
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Section 0: Notations and Conventions

Numbers:

We will denote by N the set of natural numbers, by which we mean the set of
integers n ≥ 0. A number field is defined to be a finite extension of the field of
rational numbers Q.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}
for the centralizer of H in G;

NG(H) def= {g ∈ G | g · H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g · H · g−1)
⋂

H has finite index in H, g · H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are
subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H).

Note that ZG(H), NG(H) are always closed in G, while CG(H) is not neces-
sarily closed in G.

Indeed, one may construct such an example as follows: Let

M
def=

∏
N

Zp

endowed with the product topology (of the various copies of Zp equipped with their
usual topology). Thus, M is a Hausdorff topological group. For n ∈ N, write
Fn(M) ⊆ M for the sub-topological group given by the product of the copies
of Zp indexed by m ≥ n. Write AutF (M) for the set of automorphisms of the
topological group M that preserve the filtration F ∗(M) on M . If α ∈ AutF (M),
then for every n ∈ N, α induces a continuous homomorphism αn : M/Fn(M) →
M/Fn(M) which is clearly surjective, hence an isomorphism (since M/Fn(M) is
profinite and topologically finitely generated — cf. [FJ], Proposition 15.3). It
thus follows that α induces an isomorphism Fn(M) ∼→ Fn(M), hence that the
inverse of α also lies in AutF (M). In particular, we conclude that AutF (M) is
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a group. Equip AutF (M) with the coarsest topology for which all of the homo-
morphisms AutF (M) → Aut(M/Fn(M)) (where Aut(M/Fn(M)) ∼= GLn(Zp) is
equipped with its usual topology) are continuous. Note that relative to this topol-
ogy, AutF (M) forms a Hausdorff topological group. Now define G to be the semi-
direct product of M with AutF (M) (so G is a Hausdorff topological group), and H
to be ∏

n∈N

pn · Zp ⊆
∏
N

Zp = M

(so H ⊆ G is a closed subgroup). Then CG(H) is not closed in G. For instance,
if one denotes by en ∈ ∏

N Zp the vector with a 1 in the n-th place and zeroes
elsewhere, then the limit A∞ (where

A∞(en) def= en + en+1

for all n ∈ N) of the automorphisms Am ∈ CG(H) (where Am(en) def= en + en+1 if
n ≤ m, Am(en)

def= en if n > m) is not contained in CG(H).

Curves:

Suppose that g ≥ 0 is an integer. Then a family of curves of genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism X → S whose
geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g (where we assume the points
to be unordered) by Mg,r (cf. [DM], [Knud] for an exposition of the theory of such
curves; strictly speaking, [Knud] treats the finite étale covering of Mg,r determined
by ordering the marked points). The open substack Mg,r ⊆ Mg,r of smooth curves
will be referred to as the moduli stack of smooth r-pointed stable curves of genus g
or, alternatively, as the moduli stack of hyperbolic curves of type (g, r).

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an
open immersion X ↪→ Y onto the complement Y \D of a relative divisor D ⊆ Y
which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y,D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact
is well-known from the elementary theory of algebraic curves. Thus, the asserted
uniqueness follows formally from the normality of S and the fact that Mg,r is a
separated algebraic stack (cf. [DM], [Knud]).) We shall refer to Y (respectively,
D; D; D) as the compactification (respectively, divisor at infinity; divisor of cusps;
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divisor of marked points) of X. A family of hyperbolic curves X → S is defined to
be a morphism X → S such that the restriction of this morphism to each connected
component of S is a family of hyperbolic curves of type (g, r) for some integers (g, r)
as above.

Next, we would like to consider “orbicurves”. We shall say that an algebraic
stack is generically scheme-like if it admits an open dense algebraic substack which
is isomorphic to a scheme. Let X be a smooth, geometrically connected, generically
scheme-like algebraic stack of finite type over a field k of characteristic zero. Then
we shall say that X is an orbicurve if it is of dimension 1. We shall say that X is a
hyperbolic orbicurve if it is an orbicurve which admits a compactification X ↪→ X
(necessarily unique!) by a proper orbicurve X over k such that if we denote the
reduced divisor X\X by D ⊆ X, then X is scheme-like near D, and, moreover,
the line bundle ωX/k(D) on X has positive degree. An example of a hyperbolic
orbicurve over k is given by the quotient — in the sense of stacks — of a hyperbolic
curve over k by the action of a finite group which acts freely on all but a finite
number of points of the curve.

Now suppose that
X

is a hyperbolic orbicurve over a field k (of characteristic zero), with compactification
X ↪→ X. Let k be an algebraic closure of k. Write

X → X
′

for the “coarse moduli space” (cf. [FC], Chapter I, Theorem 4.10) associated to X.
Thus, X

′
is a smooth, proper, geometrically connected curve over k. Denote the

open subscheme of X
′
which is the image of X by X ′. Write:

N∞
def= (N\{0, 1})

⋃
{∞}

Then we shall say that the hyperbolic curve X is of type

(g, �r)

if X
′
is of genus g and �r : N∞ → N is the function with finite support [i.e., which is

0 away from some finite subset of N∞] defined as follows: �r(∞) is the cardinality
of (X

′\X ′)(k). For every positive integer e ∈ N∞, �r(e) is the cardinality of the
set of k-valued points of X ′ over which X is (necessarily tamely) ramified with
ramification index e.

When k = k, it is well-known (and easily verified) that the isomorphism class of
the algebraic fundamental group π1(X) is completely determined by the type (g, �r).



8 SHINICHI MOCHIZUKI*

Categories:

We shall say that two arrows fi : Ai → Bi (where i = 1, 2) in a category C
are abstractly equivalent — and write f1

abs≈ f2 — if there exists a commutative
diagram:

A1
∼→ A2⏐⏐�f1 ⏐⏐�f2

B1
∼→ B2

(where the horizontal arrows are isomorphisms in C).

We shall refer to a natural transformation between functors all of whose com-
ponent morphisms are isomorphisms as an isomorphism between the functors in
question. A functor φ : C1 → C2 between categories C1, C2 will be called rigid if φ
has no nontrivial automorphisms.

A diagram of functors between categories will be called 1-commutative if the
various composite functors in question are rigid and isomorphic. When such a
diagram “commutes in the literal sense” we shall say that it 0-commutes. Note
that when a diagram “1-commutes”, it follows from the rigidity hypothesis that
any isomorphism between the composite functors in question is necessarily unique.
Thus, to state that the diagram 1-commutes does not result in any “loss of infor-
mation” by comparison to the datum of a specific isomorphism between the various
composites in question.

We shall say that two rigid functors φi : Ci → C′
i (where i = 1, 2; the Ci, C′

i

are categories) are abstractly equivalent — and write φ1
abs≈ φ2 — if there exists a

1-commutative diagram
C1

∼→ C2⏐⏐�φ1

⏐⏐�φ2

C′
1

∼→ C′
2

(in which the horizontal arrows are equivalences of categories).
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Section 1: Anabelioids

§1.1. The Notion of an Anabelioid

We begin by fixing a (Grothendieck) universe V , in the sense of set-theory (cf.,
e.g., [McLn1]; [McLr], §12.1), in which we shall work. Also, let us assume that we
are given a V -small category Ensf of finite sets.

Let G be a (V -small) profinite group — that is to say, the underlying profinite
set of G is an inverse limit of V -sets indexed by a V -set. Then to G, we may
associate the (V -small) category

B(G)

of (V -small) finite sets ∈ Ob(Ensf) with continuous G-action. This category is a(n)
(elementary) topos (in the sense of topos theory). In fact, it forms a rather special
kind of topos called a Galois category (cf. [John1] for an exposition of the general
theory of topoi and, in particular, of Galois categories; cf. also [SGA1], Exposé V).

Definition 1.1.1. We shall refer to as a connected anabelioid any category X
which is equivalent to a category of the form B(G) for some profinite group G.

Remark 1.1.1.1. Thus, a “connected anabelioid” is the same as a Galois category
(as defined, for instance, in [John1], p. 285) — i.e., a “Boolean topos” that admits
an “exact, isomorphism reflecting functor” to the category of finite sets.

Let X be a connected anabelioid. Then recall (cf. [SGA1], Exposé V, §5) the
notion of a fundamental functor

β∗ : X → Ensf

— i.e., an exact functor. Here, we recall that an exact functor is a functor that
preserves finite limits and finite colimits. Note that (since X is assumed to be a
connected anabelioid) an exact functor β∗ : X → Ensf is necessarily isomorphism
reflecting (i.e., a morphism α of X is an isomorphism if and only if β∗(α) is).
Recall, moreover, that if X def= B(G), and β∗ : B(G) → Ensf is the functor defined
by forgetting the G-action, then G may be recovered, up to inner automorphism,
from X , β as the group:

Aut(β∗)

Also, let us recall that any two fundamental functors are isomorphic. Note that
Ensf itself is a connected anabelioid (i.e., the result of applying B(−) to the trivial
group), so we may think of fundamental functors as “basepoints” in the following
way:
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Definition 1.1.2.

(i) If X and Y are connected anabelioids, then we define a morphism φ : X → Y
to be an exact functor φ∗ : Y → X (cf. [SGA1], Exposé V, Proposition 6.1). An
isomorphism between connected anabelioids is a morphism whose corresponding
functor in the opposite direction is an equivalence of categories.

(ii) We define a basepoint of a connected anabelioid X to be a morphism β :
Ensf → X . If β is a basepoint of X , then we refer to the group Aut(β) as the
fundamental group π1(X , β) of (X , β).

Remark 1.1.2.1. Thus, the “category of (V -small) connected anabelioids” is a 2-
category (cf., e.g., [John1], §0.1; [McLr], Chapter 12; [McLn2], XII), hence requires
special care, for instance, when considering composites, etc. Also, we remark,
relative to the standard terminology of category theory, that if φ : X → Y is an
isomorphism (of connected anabelioids), it will not, in general, be the case that φ∗

is an isomorphism of categories (i.e., an equivalence for which the correspondence
between classes of objects in the two categories is a bijection — cf. [McLn2], IV,
§4).

Remark 1.1.2.2. Since the isomorphism class of the fundamental group π1(X , β)
is independent of the choice of basepoint β, we will also speak of the “fundamental
group π1(X ) of X” when the choice of basepoint is irrelevant to the issue under
discussion.

Remark 1.1.2.3. Note that a functor φ∗ : Y → X which is an equivalence is
always necessarily exact. Thus, an isomorphism of anabelioids φ : X → Y is simply
an equivalence φ∗ : Y → X in the opposite direction.

Example 1.1.3. Anabelioids Associated to Schemes. Let X be a (V -small)
connected locally noetherian scheme. Then we shall denote by

Ét(X)

the category whose objects are (V -small) finite étale coverings of X and whose
morphisms are morphisms of schemes over X. Then it is well-known (cf. [SGA1],
Exposé V, §7) that Ét(X) is a connected anabelioid.

If G is a profinite group, then we shall use the notation

Aut(G); Inn(G); Out(G) def= Aut(G)/Inn(G)

to denote the group of (continuous) automorphisms (respectively, inner automor-
phisms; (continuous) outer automorphisms) of G. If H is another profinite group,
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then we shall write Hom(G,H) for the set of continuous homomorphisms G → H,
and

HomOut(G,H)

for the set of continuous outer homomorphisms G → H, i.e., the quotient of
Hom(G,H) by the natural action of H from the right. Also, we shall write

HomOut(G,H)

for the (V -small) category whose objects are the elements of the set Hom(G,H)
and for which the morphisms

MorHomOut(ψ1, ψ2)

from an object ψ1 : G → H to an object ψ2 : G → H are the elements h ∈ H such
that ψ2(g) = h · ψ1(g) · h−1, ∀g ∈ G. Thus, HomOut(G,H) may be thought of as
the set of isomorphism classes of the category HomOut(G,H).

Proposition 1.1.4. (The “Grothendieck Conjecture” for Connected

Anabelioids) Let X def= B(G), Y def= B(H) (where G, H are profinite groups), and
β : Ensf → X , γ : Ensf → Y be the tautological basepoints of X , Y, respectively,
determined by the definition of the notation “B(−)”. Then:

(i) There is a natural equivalence of categories:

HomOut(G,H) ∼→ Mor(X ,Y)

which induces a natural bijection:

HomOut(G,H) ∼→ Mor(X ,Y)

Here, Mor(X ,Y) (respectively, Mor(X ,Y)) denotes the category (respectively, set
of isomorphism classes) of morphisms X → Y.

(ii) There is a natural bijection:

Hom(G,H) ∼→ Mor{(X , β); (Y, γ)}

Here, Mor{(X , β); (Y, γ)} denotes the set of (isomorphism classes of) morphisms
φ : X → Y such that φ ◦ β = γ.

Proof. Let us first consider the situation of (2). Given a homomorphism ψ : G →
H, composition with ψ induces a continuous action of G on any finite set with
continuous H-action. Moreover, this operation does not affect the underlying finite
set, so we get an element ψMor ∈ Mor{(X , β); (Y, γ)}. This defines the morphism of
(2). On the other hand, given an element φ ∈ Mor{(X , β); (Y, γ)}, it follows from
the definitions that φ induces a morphism Aut(β) → Aut(γ). One checks easily



12 SHINICHI MOCHIZUKI*

that this correspondence defines a two-sided inverse (well-defined up to composition
with an inner automorphism of Aut(γ) ∼= H) to the correspondence ψ �→ ψMor.

Next, we consider the situation of (1). By the above paragraph, we get a
morphism

Hom(G,H) → Mor(X ,Y)

Let us first verify that this morphism is a surjection. Denote by S the pro-object
of Y whose underlying profinite set Sset = H and whose H-action is given by the
usual action on Sset = H from the left. Note that the group of automorphisms
AutY(S) of S (as a pro-object of Y) may be identified with H via the action of H
on Sset = H from the right. In fact, this action of H on S (from the right) endows
S with a structure of “H-torsor object” of Y. Thus, if φ : X → Y is a morphism,
then T

def= φ∗(S) is an H-torsor object of X . If we think of T as a profinite set
Tset equipped with a G-action from the left and an H-action from the right, then
let us observe that, by fixing some element t ∈ Tset, we may identify the group of
automorphisms AutH(Tset) of the profinite set Tset that commute with the H-action
from the right with H via its action from the left. Here, we observe that such an
identification

AutH(Tset) ∼= H

is determined by the choice of a “basepoint” t ∈ Tset, hence is well-defined, up
to composition with an inner automorphism of H. It thus follows that the action
of G on Tset from the left determines a continuous outer homomorphism G →
AutH(Tset) = H which (cf. the preceding paragraph) gives rise to a morphism
X → Y isomorphic to φ. This completes our verification of surjectivity.

Thus, to complete the proof of (1), it suffices to verify that there is a natural
bijection between the set of isomorphisms between the morphisms φ1, φ2 : X → Y
arising from two continuous homomorphisms

ψ1, ψ2 : G → H

and the subset MorHomOut(ψ1, ψ2) ⊆ H. To verify this, let us observe that if we
pull-back the H-torsor object S of Y (cf. the preceding paragraph) via φ1, φ2 to
obtain H-torsor objects T1

def= φ∗
1(S), T2

def= φ∗
2(S) of X , then it is a tautology that

isomorphisms φ1
∼→ φ2 are in natural bijective correspondence with isomorphisms

T1
∼→ T2 of H-torsor objects of X . Thus, the desired bijection is a consequence of

Lemma 1.1.5 below. ©

Lemma 1.1.5. (Two-Sided Group Actions) Let

ψ1, ψ2 : G → H

be continuous homomorphisms. For i = 1, 2, denote by Yi a copy of H equipped with
the usual action of H from the right and the action of G determined by composing
the usual action of H from the left with ψi; write ti for the copy of “1” in Yi. Then

ξ �→ h ∈ H
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— where h satisfies ξ(t1) = t2 ·h — determines a bijection from the set of (G,H)-
equivariant bijections ξ : Y1

∼→ Y2 to the subset MorHomOut(ψ1, ψ2) ⊆ H.

Proof. Indeed,

t2 · h · ψ1(g) = ξ(t1) · ψ1(g) = ξ(t1 · ψ1(g)) = ξ(g · t1) = g · ξ(t1) = t2 · ψ2(g) · h

i.e., h ·ψ1(g) ·h−1 = ψ2(g), ∀ g ∈ G. Thus, h ∈ MorHomOut(ψ1, ψ2) ⊆ H. Similarly,
if ψ1 and ψ2 differ by composition with an inner automorphism of H defined by
an element h ∈ MorHomOut(ψ1 , ψ2), then t1 �→ t2 · h defines a (G,H)-equivariant
bijection ξ, as desired. ©

Remark 1.1.4.1. Many readers may feel that Proposition 1.1.4 is “trivial” and
“well-known”. The reason that we nevertheless chose to give a detailed exposition
of this fact here is that it represents the essential spirit that we wish to convey
in the term “anabelioid”. That is to say, we wish to think of anabelioids X as
generalized spaces (which is natural since they are, after all, topoi — cf. [John2])
whose geometry just happens to be “completely determined by their fundamental
groups” (albeit somewhat tautologically!). This is meant to recall the notion of an
anabelian variety (cf. [Groth]), i.e., a variety whose geometry is determined by its
fundamental group. The point here (which will become clear as the manuscript
progresses) is that:

The introduction of anabelioids allows us to work with both “algebro-
geometric anabelioids” (i.e., anabelioids arising from (anabelian) varieties
— cf. Example 1.1.3) and “abstract anabelioids” (i.e., those which do not
necessarily arise from an (anabelian) variety) as geometric objects on
an equal footing.

The reason that it is important to deal with “geometric objects” as opposed to
groups, is that:

We wish to study what happens as one varies the basepoint of one of
these geometric objects.

That is to say, groups are determined only once one fixes a basepoint. Thus, it
is difficult to describe what happens when one varies the basepoint solely in the
language of groups.

Next, let
φ : X → Y

be a morphism between connected anabelioids. Write

Iφ ⊆ X
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for the smallest subcategory of X that contains all subquotients of objects in the
essential image of the pull-back functor φ∗. One verifies immediately that Iφ is a
connected anabelioid. Note that the morphism φ : X → Y factors naturally as a
composite

X → Iφ → Y
with the property that if we choose a basepoint βX of X and denote the result-
ing basepoints of Iφ, Y, by βIφ , βY , respectively, then the induced morphisms of
fundamental groups

π1(X , βX ) � π1(Iφ, βIφ) ↪→ π1(Y, βY )

are a surjection followed by an injection. Moreover, we note the following conse-
quence of Proposition 1.1.4, (i):

Corollary 1.1.6. (Automorphism of an Arrow Between Connected
Anabelioids) The set of automorphisms Aut(X → Y) of a 1-arrow X → Y between
connected anabelioids is in natural bijective correspondence with the centralizer in
the fundamental group of Y of the image of the fundamental group of X .

Definition 1.1.7.

(i) We shall refer to Iφ as the image of X in Y.

(ii) We shall refer to a morphism φ : X → Y between connected anabelioids
as a π1-epimorphism (respectively, π1-monomorphism) if the morphism Iφ → Y
(respectively, X → Iφ) is an equivalence.

Now let I be a finite set. Assume that for each i ∈ I, we are given a connected
anabelioid Xi. Write

XI def=
∏
i∈I

Xi

for the product of the categories Xi. In the terminology of [SGA1], Exposé V, §9,
this XI is a “multi-Galois category”. In particular, XI is a topos.

Definition 1.1.8. Let X be a topos, and S ∈ Ob(X ) an object of X . Write
0X (respectively, 1X ) for the initial (respectively, terminal) object of X . Then any
collection of data

S ∼=
∐
a∈A

Sa

(where 0X �∼= Sa ∈ Ob(X ); the index set A is finite) will be called a decomposition
of S. The object S will be called connected if the index set of any decomposition
of S has cardinality one. The topos X will be called connected if 1X is connected.

Next, let us observe that:
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The set I and the categories Xi (for i ∈ I), as well as the equivalence of
categories between XI with the product of the Xi may be recovered entirely
from the abstract category XI.

Indeed, let us denote (for i ∈ I) the object of XI obtained by taking the product
of 1Xi with the 0Xj (for j �= i) by εi. Thus, we obtain a decomposition

1XI =
∐
i∈I

εi

of the object 1XI . Moreover, this decomposition is clearly maximal with respect
to the partial ordering on decompositions of 1XI determined by the (obviously
defined) notion of refinements of decompositions of 1XI . Thus, we see that this
decomposition may be recovered solely from internal structure of the category XI .
In particular, the finite set I may be recovered category-theoretically from the
category XI . Moreover, the category Xi may be recovered category-theoretically
from the category XI as the subcategory of objects over εi. Finally, it is clear that
these subcategories determine the equivalence of categories between XI with the
product of the Xi.

Definition 1.1.9. We shall refer to the Xi as the connected components of XI
and to π0(XI) def= I as the (finite) index set of connected components.

Definition 1.1.10.

(i) We shall refer to a category equivalent to a category of the form XI as an
anabelioid. We shall denote the 2-category of V -small anabelioids by

AnabV

(or simply Anab, when there is no danger of confusion).

(ii) A morphism between anabelioids is defined to be an exact functor in the
opposite direction. An isomorphism between anabelioids is a morphism whose
corresponding functor in the opposite direction is an equivalence of categories.

Next, let us observe that if we are given a finite set J , together with connected
anabelioids Yj for each j ∈ J , and morphisms

ζ : I → J ; φi : Xi → Yζ(j)
we get an exact functor φ∗

I : YJ → XI (by forming the product of the φi), which
we would like to regard as a morphism φI : XI → YJ .

Proposition 1.1.11. (Morphisms of Not Necessarily Connected Anabe-
lioids) The association

{ζ, φi} �→ φI
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defines an equivalence between the category of data on the left and the category of
arrows ψ : XI → YJ .

Proof. Indeed, this follows immediately by considering the pull-back of 1YJ , as
well as of its maximal decomposition, via the exact functor ψ∗, in light of the fact
(observed above) that

1XI =
∐
i∈I

εi

is the maximal (relative to refinement) decomposition of 1XI . ©

Definition 1.1.12. We shall refer to a morphism between anabelioids as a π1-
epimorphism (respectively, π1-monomorphism) if each of the component morphisms
(cf. Proposition 1.1.11) between connected anabelioids is a π1-epimorphism (respec-
tively, π1-monomorphism).

§1.2. Finite Étale Morphisms

In this §, we consider the notion of a “finite étale morphism” in the context of
anabelioids.

Let X be an anabelioid. Let S ∈ Ob(X ). We will denote the category of objects
over S by

XS
(i.e., the objects of XS are arrows T → S in X ; the arrows of XS between T → S
and T ′ → S are S-morphisms T → T ′). Let us write

jS : XS → X

for the forgetful functor (i.e., the functor that maps T → S to T ) and

i∗S : X → XS
for the functor given by taking the product with S.

Proposition 1.2.1. (The Extension Functor)

(i) The category XS is an anabelioid whose connected components are in
natural bijective correspondence with the connected components of S.

(ii) The functor jS is left adjoint to the functor i∗S.

(iii) The functor i∗S is exact, hence defines a morphism of anabelioids iS :
XS → X .

(iv) Suppose that S is the coproduct of a finite number of copies of 1X (indexed,
say, by a (V -)set A). Then each connected component of XS may be identified with
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X ; the set of connected components of XS may be identified with A. Moreover, jS
maps a collection of objects {Sa}a∈A of X indexed by A to the coproduct object∐

a∈A
Sa

in X .

(v) Suppose that X = B(G) (where G is a (V -small) profinite group) and
that S is given by the G-set G/H, where H ⊆ G is an open subgroup. Then
iS : XS → X may be identified with [i.e., is “abstractly equivalent” (cf. §0) — in a
natural fashion — to] the morphism

B(H) → B(G)

induced by the inclusion H ↪→ G. Moreover, if T ∈ Ob(XS) is represented by an
H-set Tset, then jS(T ) is isomorphic to the G-set given by

(G × Tset)/H

where H � h acts on G × Tset � (g, t) via (g, t) �→ (hg, ht), and the G-action is the
action induced on (G× Tset)/H by letting G � g act on G by multiplication by g−1

from the right.

Proof. These assertions all follow immediately from the definitions. ©

Thus, Proposition 1.2.1, (ii), shows that if φ : Y → X factors as the com-
posite of an isomorphism α : Y ∼→ XS with the morphism iS : XS → X for some
S ∈ Ob(X ), then there is a natural choice for the isomorphism α, namely, the
isomorphism induced by the left adjoint φ! : Y → X to the functor φ∗. Indeed,
it follows from Proposition 1.2.1, (ii), that such a left adjoint φ! always exists and
that φ! induces an isomorphism Y ∼→ XSφ , where Sφ

def= φ!(1Y).

Definition 1.2.2.

(i) A morphism of anabelioids φ : Y → X will be called finite étale if it factors
as the composite of an isomorphism α : Y ∼→ XS with the morphism iS : XS → X
for some S ∈ Ob(X ).

(ii) Suppose that φ : Y → X is a finite étale morphism. Then we shall refer
to the left adjoint functor φ! to the pull-back functor φ∗ as the extension functor
associated to φ.

Remark 1.2.2.1. Thus, the morphism B(H) → B(G) induced by a continuous
homomorphism φ : H → G is finite étale if and only if φ is an injection onto an
open subgroup of G. Moreover, any finite étale morphism of connected anabelioids
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may be written in this form (by choosing appropriate basepoints for the domain
and range). The characterization of Definition 1.2.2, (i), however, has the virtue of
being independent of choices of basepoints.

Definition 1.2.3. Let φ : Y → X be a finite étale morphism of anabelioids.
Then we shall say that φ is a covering (respectively, relatively connected) if the
induced morphism π0(Y) → π0(X ) on connected components (cf. Definition 1.1.9)
is surjective (respectively, an bijective).

Definition 1.2.4.

(i) Let G be a profinite group. Then we shall say that G is slim if the centralizer
ZG(H) of any open subgroup H ⊆ G in G is trivial.

(ii) Let X be an anabelioid. Then we shall say that X is slim if the fundamental
group π1(Xi) of every connected component i ∈ π0(X ) of X is slim.

(iii) A morphism of anabelioids whose corresponding pull-back functor is rigid
will be called rigid. A 2-category of anabelioids will be called slim if every 1-
morphism in the 2-category is rigid.

(iv) If C is a 2-category, we shall write

|C|

for the associated 1-category whose objects are objects of C and whose morphisms
are isomorphism classes of morphisms of C. We shall also refer to |C| as the coar-
sification of C.

Remark 1.2.4.1. The name “coarsification” is motivated by the theory of “coarse
moduli spaces” associated to (say) “fine moduli stacks”.

Remark 1.2.4.2. Thus, a diagram of rigid morphisms of anabelioids “1-commutes”
(cf. §0) if and only if it commutes in the coarsification.

In a word, the theory of coverings of anabelioids is easiest to understand when
the anabelioid in question is slim. For instance:

Proposition 1.2.5. (Slim Anabelioids) Let X be a slim anabelioid. Then:

(i) The pull-back and extension functors associated to a finite étale morphism
between slim anabelioids are rigid (cf. §0). In particular, if we write

Et(X ) ⊆ Anab
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for the 2-category whose (0-)objects are finite étale morphisms Y → X and whose
(1-)morphisms are finite étale arrows Y1 → Y2 “over” X [i.e., in the sense of
“1-commutativity” — cf. §0], then Et(X ) is slim. Write: Ét(X ) def= |Et(X )|.

(ii) The functor

FX : X → Ét(X )

S �→ (XS → X )

(where S ∈ Ob(X )) is an equivalence (i.e., fully faithful and essentially surjec-
tive).

Proof. Indeed, (i) follows formally from Corollary 1.1.6 and Definition 1.2.4, (i),
(ii), (iii). As for (ii), essential surjectivity follows formally from Definition 1.2.2, (i).
To prove fully faithfulness, it suffices to compute, when X = B(G), Y1 = B(H1),
Y2 = B(H2), and H1, H2 are open subgroups of G, the subset

MorX (Y1,Y2) ⊆ Mor(Y1,Y2)

[i.e., of isomorphism classes of morphisms “over” X ] via Proposition 1.1.4, (i).
This computation yields that the set in question is equal to the quotient, via the
conjugation action by H2, of the set of morphisms H1 → H2 induced by conjugation
by an element g ∈ G such that H1 ⊆ g ·H2 ·g−1. But this quotient may be identified
with the subset of elements g · H2 ∈ G/H2 such that H1 ⊆ g · H2 · g−1. Note that
here we must apply the assumption of slimness, to conclude that it is not necessary
to quotient G/H2 any further by various centralizers in G of conjugates of H1. On
the other hand, this quotient is simply another description of the set

HomG(G/H1, G/H2)

as desired. ©

Remark 1.2.5.1. By Proposition 1.2.5, (i), it follows that, at least when we
restrict our attention to finite étale morphisms of slim anabelioids, we do not “lose
any essential information” by working in the coarsification (of Anab). Thus,
in the following discussion, we shall often do this, since this simplifies things sub-
stantially. For instance, if φ : Y → X and ψ : Z → X are arbitrary finite étale
morphism of slim anabelioids, then [if we work in the coarsification] it makes sense
to speak of the pull-back (of φ via ψ), or fiber product (of Y, Z over X ):

Y ×X Z

Indeed, such an object may be defined by the formula:

Zψ∗(φ!(1Y)) → Z
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By thinking of φ : Y → X as some “XS → X ” as in the above discussion, one
verifies easily that this definition satisfies all the expected properties. One verifies
easily that all conceivable compatibilities are satisfied [e.g., when one interchanges
the roles of φ and ψ].

Remark 1.2.5.2. In fact, essentially all of the anabelioids that we shall actually
deal with in this paper will be slim. Thus, in some sense, it might have been more
natural to take the notion of a “slim anabelioid” as our definition of the term
“anabelioid”. There are two reasons why we chose not to do this: First, this would
require us to prove slimness every time that we wish to use term “anabelioid”, which
would, in some sense, be rather unnatural, just as having to prove separatedness
every time one uses the term “scheme” (if, as in the earlier terminology, one defines
a scheme to be a “separated scheme” (in the current terminology)). Second, just as
with the separatedness of schemes, which is not a Zariski local notion, the notion
of slimness of an anabelioid is not (finite) étale local. (That is to say, a non-
slim anabelioid may admit a finite étale covering which is slim.) Thus, requiring
anabelioids to be slim would mean that the notion of an anabelioid is not “finite
étale local”, which would again be unnatural.

Remark 1.2.5.3. Note that although FX is fully faithful and essentially surjective,
substantial care should be exercised when speaking of FX as an “equivalence”. The
reason for this is that:

The collection of objects of Ét(X ) or Et(X ) necessarily belongs to a larger
Grothendieck universe — that is to say, unlike X , the category Ét(X )
is no longer V -small — than the collection of objects of X .

Put another way, FX , i.e., the passage from X to Ét(X ), may be thought of as a sort
of “change of Grothendieck universe, while keeping the internal category structure
intact”.

Just as in the theory of schemes, one often wishes to work not just with finite
étale coverings, but also with “profinite étale coverings” (i.e., projective systems of
étale coverings). In the case of anabelioids, we make the following

Definition 1.2.6. We shall refer to as a pro-anabelioid any “pro-object” (indexed
by a set)

X = lim←−
α

Xα

relative to the coarsified category

Anab def= |Anab|
in which all of the transition morphisms Xα → Xβ are finite étale coverings of
slim anabelioids. Here, by “pro-object”, we mean an equivalence class of projective
systems (relative to the evident notion of equivalence).
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Remark 1.2.6.1. Thus, (for us) pro-anabelioids only exist at the “coarsified
level” (unlike anabelioids, which may be treated either in Anab or in Anab).

Remark 1.2.6.2. Given a pro-anabelioid

X = lim←−
α

Xα

it is natural to define the set of connected components of X by:

π0(X ) def= lim←−
α

π0(Xα)

In general, π0(X ) will be a profinite set. Moreover, for each i ∈ I, one obtains a
connected pro-anabelioid

Xi
by forming

lim←−
α

of the compatible system of connected components of the Xα indexed by i.

Remark 1.2.6.3. Given two pro-anabelioids X = lim←−α Xα; Y = lim←−β Yβ , by the
definition of a “pro-object”, it follows that:

Mor(X ,Y) = lim←−
β

lim−→
α

Mor(Xα,Yβ)

Note that this formula also applies in the case when one or both of X , Y is an
anabelioid, by thinking of anabelioids as pro-anabelioids indexed by the set with
one element.

Suppose that we are given a connected anabelioid X def= B(G) (where G is
a profinite group). Let us write β : Ensf → X for the tautological basepoint of
B(G). Then one important example of a pro-anabelioid which forms a profinite
étale covering of X is the “universal covering” X̃β, defined as follows: For each

open subgroup H ⊆ G, let us write XH def= B(H). (In other words, XH is the
category XS associated to the object S ∈ Ob(X ) determined by the G-set G/H.)
Thus, if H ′ ⊆ H, then we have a natural morphism XH ′ → XH . Moreover, these
morphisms form a projective system whose transition morphisms are clearly finite
étale coverings. Hence, we obtain a pro-anabelioid

X̃β def= lim←−
H

XH

(where H ranges over the open subgroups of G), together with a “profinite étale
covering”

X̃β → X
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which (just as in the case of schemes) has the property that the pull-back via
this covering of any finite étale covering Y → X splits (i.e., is isomorphic to the
coproduct of a finite number of copies of the base).

Definition 1.2.7. Let X be an anabelioid, and Y a pro-anabelioid. Then a
profinite étale covering Y → X will be referred to as a universal covering of X if
it is relatively connected [i.e., given by a projective system of relatively connected
finite étale morphisms] and satisfies the property that the pull-back to Y of any
finite étale covering of X splits.

Note that by Proposition 1.2.5, (ii), it follows that when X = B(G) is slim, the
set

MorX (X̃β ,XH)

may be identified with G/H. In particular, we obtain the result that the base-
point β is naturally equivalent to the restriction to the image of the functor FX of
Proposition 1.2.5, (ii), of the basepoint of Ét(X ) defined by the formula:

MorX (X̃β ,Y)

(where Y → X is an object of Ét(X )).

Proposition 1.2.8. (Basic Properties of Universal Coverings) Let X be
a slim anabelioid. Then:

(i) There exists a universal covering Y → X .

(ii) Any two universal coverings Y → X , Y ′ → X are isomorphic over X .

(iii) Suppose that X is connected. Then the formula

β
�X (S) def= MorX (X̃ ,XS)

(where S ∈ Ob(X )) defines an equivalence of categories between the category
of universal coverings X̃ → X (whose morphisms are isomorphisms X̃ ∼→ X̃ ′

over X ) and the category of basepoints β : Ensf → X (whose morphisms β
∼→ β′

are isomorphisms of functors (β′)∗ ∼→ β∗). In particular, if X̃ → X determines the
basepoint β

�X , then
AutX (X̃ ) = Aut(β

�X ) = π1(X , β
�X )

(where AutX (X̃ ) is the set of automorphisms relative to the category of universal
coverings just defined).

(iv) Suppose that X def= B(G), X ′ def= B(G′) are slim connected anabelioids. Let
X̃ → X , X̃ ′ → X ′ be the universal coverings determined by the tautological base-
points β, β′. Then, if we denote by Isom(X̃ , X̃ ′) the set of isomorphisms X̃ ∼→ X̃ ′
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which do not necessarily lie over some isomorphism X ∼→ X ′, we have a natural
isomorphism

Isog((X , β); (X ′, β′)) def= Isom(X̃ , X̃ ′) ∼→ lim−→
H

{open injections H ↪→ G′}

(where H ranges over the open subgroups of G).

Proof. Assertions (i), (ii) follow formally from the definitions and the above discus-
sion. Now let us consider assertion (iv). Suppose that we are given an isomorphism
φ : X̃ ∼→ X̃ ′. By Proposition 1.1.4, (i), such a morphism arises from some homo-
morphism H → H ′, determined up to conjugation with an inner automorphism
arising from H ′. Here, we take H ⊆ G, H ′ ⊆ G′ to be normal open subgroups.
If K ′ ⊆ G is another normal open subgroup contained in H ′, then there exists a
normal open subgroup K ⊆ G contained in H, together with a homomorphism
K → K ′ (determined by φ, up to conjugation with an inner automorphism arising
from K ′) such that the outer homomorphism H → H ′ is compatible with the outer
homomorphism K → K ′. Note, moreover, that since X ′ is slim, a unique homo-
morphism H → H ′ up to conjugation with an inner automorphism arising from K ′

is determined by the homomorphism K → K ′. (Indeed, this follows by considering
the faithful actions (by conjugation) of H, H ′ on K, K ′, respectively.) Thus, by
taking K ′ to be arbitrarily small, we see that φ determines a unique homomorphism
H → H ′ ⊆ G′. Consideration of the inverse to φ shows that this homomorphism
H → G′ is necessarily an open injection. On the other hand, any open injection
H ↪→ G′ clearly determines an isomorphism φ. This completes the proof of (iv).

Finally, we consider property (iii). Since it is clear that any isomorphism be-
tween universal coverings induces an isomorphism of the corresponding basepoints,
it suffices to prove property (iii) in the “automorphism” case. For simplicity, we
shall write X = B(G), and assume that the basepoint β in question is the tautolog-
ical basepoint. By property (iv), any isomorphism φ : X̃ ∼→ X̃ arises from an open
injection H ↪→ G. The fact that the composite of φ with X̃ → X is isomorphic
to X̃ → X implies (cf. Proposition 1.1.4, (i)) that this open injection H ↪→ G is
induced by conjugation by a unique (by slimness) element of G. On the other hand,
conjugation by an element of G clearly determines an element of AutX (X̃ ). Thus,
AutX (X̃ ) = G, as desired. ©

Remark 1.2.8.1. When (cf. Proposition 1.2.8, (iv)) β, β′ are fixed throughout
the discussion, we shall write

Isog(X ,X ′)

for Isog((X , β); (X ′, β′)). When (X , β) = (X ′, β′), we shall write Isog(X ) for
Isog(X ,X ′).

Finally, before proceeding, we present the following:
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Definition 1.2.9.

(i) We shall say that a continuous homomorphism of Hausdorff topological
groups G → H is relatively slim if the centralizer in H of the image of every open
subgroup of G is trivial.

(ii) We shall say that a morphism of anabelioids U → V is relatively slim if
the induced morphism between fundamental groups of corresponding connected
components of U , V is relatively slim.

Remark 1.2.9.1. Thus, X is slim if and only if the identity morphism X → X is
relatively slim. Also, if U → V is relatively slim, then the arrow U → V is rigid [i.e.,
has no nontrivial automorphisms — cf. Corollary 1.1.6]. If U → V is a relatively
slim morphism between connected anabelioids, then it follows that V is slim; if,
moreover, U → V is a π1-monomorphism, then it follows that U is also slim.

Remark 1.2.9.2. The construction of a pull-back, or fiber product, discussed in
Remark 1.2.5.1 generalizes immediately to the case where φ : Y → X is a finite
étale morphism of slim anabelioids, and ψ : Z → X is an arbitrary relatively slim
morphism of slim anabelioids, via the formula of loc. cit.:

Zψ∗(φ!(1Y)) → Z

One verifies immediately that all conceivable compatibilities are satisfied.
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Section 2: Cores and Quasi-Cores

§2.1. Localizations and Cores

In this §, we discuss the notion of a core in the context of slim anabelioids.
This notion will play a central role in the theory of the present paper.

Let X be a slim anabelioid. Let us write

Loc(X ) (⊆ Anab)

for the 2-category whose (0-)objects are (necessarily slim) anabelioids Y that admit
a finite étale morphism to X , and whose (1-)morphisms are finite étale morphisms
Y1 → Y2 (that do not necessarily lie over X !). Note that given an object of Loc(X ),
the set of connected components of this object may be recovered entirely category-
theoretically from the coarsification

Loc(X ) def= |Loc(X )|
of the 2-category Loc(X ) (cf. Proposition 1.1.11).

Proposition 2.1.1. (Categories of Localizations) Let X be a slim anabe-
lioid. Then:

(i) Loc(X ) is slim.

(ii) Denote by
Loc(X)

the 2-category whose (0-)objects Z are slim anabelioids which arise as finite
étale quotients of objects in Loc(X ) [i.e., there exists a finite étale morphism Y →
Z, where Y ∈ Ob(Loc(X ))] and whose (1-)morphisms are finite étale morphisms.
Then the 2-category Loc(X ) is slim. Write: Loc(X ) def= |Loc(X )|.

(iii) The 2-category Loc(X ) (respectively, category Loc(X )) may be recon-
structed entirely category-theoretically from Loc(X ) (respectively, Loc(X )) by
considering the “2-category (respectively, category) of objects of Loc(X ) (respec-
tively, Loc(X )) equipped with a finite étale equivalence relation”.

(iv) Suppose that we arbitrarily choose finite étale structure morphisms to
X for all of the objects of Loc(X ). Then every morphism Y1 → Y2 of Loc(X )
may be written as the composite of an isomorphism Y1

∼→ Y3 with a finite étale
morphism Y3 → Y2 over X .

Proof. Assertions (i) and (ii) are formal consequences of Corollary 1.1.6. Asser-
tions (iii) and (iv) follow formally from the definitions. ©

Let X be a slim anabelioid. Then:
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Definition 2.1.2.

(i) We shall say that X is a(n) (absolute) core if X is a terminal object in
Loc(X ).

(ii) We shall say that X admits a(n) (absolute) core if there exists a terminal
object Z in Loc(X ). In this case, Loc(X ) = Loc(Z) = Loc(Z), so we shall say that
Z is a core.

Remark 2.1.2.1. Note that in Proposition 2.1.1, (ii), it is important to assume
that the quotients Z that one considers are slim. Indeed, if one did not impose
this condition, then by “forming quotients of slim anabelioids by the trivial actions
of finite groups”, one verifies easily that the 1-category associated to the resulting
2-category never admits a terminal object — i.e., “no slim anabelioid would admit
a core”. From the point of view of anabelian varieties — e.g., hyperbolic orbicurves
— this condition of slimness amounts to the condition that the algebraic stacks
that one works with are generically schemes (cf. [Mzk9], §2).

Remark 2.1.2.2. Note that the definability of Loc(X ), Loc(X ) is one of the most
fundamental differences between the theory of finite étale coverings of anabelioids
as discussed in §1.2 and the theory of finite étale coverings from the point of view
of “Galois categories”, as given in [SGA1]. Indeed, from the point of view of the
theory of [SGA1], it is only possible to consider “Ét(X )” — i.e., finite étale coverings
and morphisms that always lie over X . That is to say, in the context of the theory
of [SGA1], it is not possible to consider diagrams such as:

Z
↙ ↘

X Y
(where the arrows are finite étale) that do not necessarily lie over any specific
geometric object. We shall refer to such a diagram as a correspondence or isogeny
between X and Y. When there exists an isogeny between X and Y, we shall say
that X and Y are isogenous.

Next, we would like to consider universal coverings. Let β, γ be basepoints of
a connected slim anabelioid X . Write

πβ : X̃β → X ; πγ : X̃γ → X

for the associated universal coverings (cf. the discussion of §1.2). In the following
discussion, we would also like to consider an isomorphism

ξ : X̃β ∼→ X̃γ
(cf. Proposition 1.2.8, (iv)).
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Definition 2.1.3. We shall refer to an isomorphism ξ : X̃β ∼→ X̃γ as above as an
outer path from β to γ. If ξ arises from a commutative [i.e., at the coarsified level]
diagram of anabelioids

X̃β ξ−→ X̃γ⏐⏐� ⏐⏐�
X idX−→ X

then we shall refer to ξ as an inner path from β to γ. An outer (respectively, inner)
path from β to itself will be referred to as an (X̃β-valued) open (respectively, closed)
path.

Remark 2.1.3.1. Thus, inner paths are precisely the paths of [SGA1], Exposé V,
§7. Note that the difference between an “inner” path and an “outer” path depends
essentially on the “identity” of β, γ — i.e., what appears to be an outer path if one
thinks of β and γ as in fact being “equal” may appear to be an inner path if one
thinks of β and γ as “distinct”. Put another way:

The distinction between inner and outer paths depends essentially on the
“model of set theory” under consideration — i.e., on the labels that
one uses to describe the various sets involved in the discussion.

It is the hope of the author to pursue this point of view in more detail in a future
paper.

Remark 2.1.3.2. Note that an inner path is a special case of an outer path. The
difference between an inner path and an arbitrary outer path is easiest to analyze
when β = γ (but cf. Remark 2.1.3.1!). In this case, an (X̃β-valued) closed path is
simply an element of the fundamental group π1(X , β).

On the other hand, the motivation for the terminology “open path” is the
following. Let K be a perfect field; L a finite Galois extension of K; and K an
algebraic closure of K. Then to give a K-valued basepoint β of L is to give an
embedding ιβ : L ↪→ K. If we are then given a K-linear isomorphism σ : K

∼→ K

(i.e., an element σ ∈ Gal(K/K)), then the composite of σ with ιβ determines
another embedding ιγ : L ↪→ K. Of course, the two basepoints β, γ of Spec(L)
defined by ιβ , ιγ map to the same basepoint of Spec(K) — i.e., “if one applies the
projection Spec(L) → Spec(K), then σ becomes a closed path in Spec(K)”. This is
intended to be reminiscent of the analogy between Galois groups in field theory and
fundamental groups in algebraic topology (where we recall that the theory of the
latter may be formulated not just in terms of covering groups, but also in terms of
literal closed paths, i.e., topological images of the circle S1, in the space in question).
Thus, it is natural to regard σ — when working with σ as an object associated to
Spec(L) — as an open path (valued in K), i.e., the analogue of a topological image
of the interval [0, 2π] as opposed to the circle S1, on Spec(L).
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Incidentally, this example also shows the reason for the choice of terminology
“inner/outer path”. That is to say, inner/closed paths induce (via “parallel trans-
port”) inner automorphisms of the fundamental group, while outer/open paths
arise from arbitrary (outer) automorphisms, or even isogenies, of the fundamental
group.

Proposition 2.1.4. (The Totality of Basepoints) Let X be a connected
slim anabelioid. Let X̃ → X be a universal covering of X , that determines
some basepoint β of X . Then:

(i) The subgroup

ΠX
def= π1(X , β) = AutX (X̃ ) ⊆ Aut(X̃ ) = Isog(X )

is commensurable with all of its conjugates in Isog(X ). Moreover, the open
subgroups of ΠX define a basis for a topology on Isog(X ) with respect to which
Isog(X ) forms a Hausdorff topological group. Finally, the subgroup ΠX ⊆
Isog(X ) is both open and closed with respect to this topology.

(ii) Isog(X ) acts transitively on the set of X̃ -valued basepoints — i.e.,
(isomorphism classes of) profinite étale morphisms X̃ → X — of X . Moreover,
this action determines a bijection between the set of X̃ -valued basepoints and the
coset space:

Isog(X )/ΠX

(iii) Suppose that X is a core. Then ΠX = Isog(X ). That is to say, X admits
precisely one X̃ -valued basepoint. In particular, all open paths on X are, in fact,
closed. Moreover, the natural functors

Et(X ) → Loc(X ) → Loc(X ); Ét(X ) → Loc(X ) → Loc(X )

are equivalences.

Proof. These assertions are all formal consequences of the definitions (cf. also
Proposition 1.2.8, (iv)). ©

Remark 2.1.4.1. Note, however, that the subgroup of Isog(X ) generated by ΠX
and some conjugate of ΠX does not necessarily contain either of these two groups
as a finite index subgroup. Perhaps the most famous example of this phenomenon
is the theorem of Ihara (cf., e.g., [Serre1], II, §1.4, Corollary 1; [Ihara]) expressing
SL2(Qp) as an amalgam of two copies of SL2(Zp), amalgamated along a subgroup
which is open in both copies of SL2(Zp). In the notation of the present discussion,
this example corresponds to the case

X def= B(SL±
2 (Zp))
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(where, instead of SL2(Zp), we use its quotient SL±
2 (Zp) by ±1 to ensure that X

is slim). Note that this example shows that Isog(X ) does not necessarily admit a
natural structure of profinite group. Indeed, in the case of SL±

2 (Zp), one checks
easily (by applying the theory of p-adic Lie groups — cf., e.g., [Serre2], Chapter V,
§7) that Isog(X ) = PGL2(Qp) (which is not profinite).

Remark 2.1.4.2. The above example of SL2(Zp) highlights one of the major
themes of the present paper, i.e., that:

open paths ⇐⇒ Isog(X ) ⇐⇒ correspondences

— that is to say, just as (in the “classical theory” of the étale fundamental group
given in [SGA1]) closed paths (i.e., elements of π1) correspond to elements of ΠX ,
open paths corresponds to elements of Isog(X ), i.e., “correspondences”.

Remark 2.1.4.3. It is interesting to note relative to Proposition 2.1.4, (ii) (cf.
also Proposition 1.2.8, (iii); Remark 2.1.3.1) that the cardinality of the collection
of basepoints Ensf → X is the same as that of the collection of profinite étale
morphisms X̃ → X . Indeed, both collections have the same cardinality as the
collection of morphisms Ensf → Ensf.

§2.2. Holomorphic Structures and Commensurable Terminality

In this §, we wish to discuss a relative version of the theory of §2.1. Let X , Q
be slim anabelioids.

Definition 2.2.1.

(i) A Q-holomorphic structure on X is the datum of a relatively slim morphism
(cf. Definition 1.2.9, (ii)) X → Q, which we shall refer to as the structure morphism.

(ii) A slim anabelioid equipped with a Q-holomorphic structure will be referred
to as a Q-anabelioid.

(iii) A Q-holomorphic morphism (or “Q-morphism” for short) between Q-
anabelioids is a morphism of anabelioids compatible with the Q-holomorphic struc-
tures.

(iv) A Q-holomorphic structure/Q-anabelioid will be called faithful if its struc-
ture morphism is a π1-monomorphism.

Remark 2.2.1.1. Here, we note that the term “compatible” in Definition 2.2.1,
(iii), makes sense, precisely because of the assumption of relative slimness in Defi-
nition 2.2.1, (i) (cf. Corollary 1.1.6).
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Let us write
LocQ(X )

for the 2-category whose (0-)objects Y → Q are Q-anabelioids that admit a Q-
holomorphic finite étale morphism Y → X to X , and whose (1-)morphisms are
arbitrary finite étale Q-morphisms (that do not necessarily lie over X !). Now we
have the “Q-holomorphic analogue” of Proposition 2.1.1:

Proposition 2.2.2. (Categories of Holomorphic Localizations) Let Q be
a slim, connected anabelioid; X a Q-anabelioid. Then:

(i) LocQ(X ) is slim. Write: LocQ(X ) def= |LocQ(X )|.
(ii) Denote by

LocQ(X)

the 2-category whose (0-)objects Z → Q are Q-anabelioids which arise as finite
étale quotients of objects in LocQ(X ) [i.e., there exists a finite étale Q-morphism
Y → Z, where Y ∈ Ob(LocQ(X ))] and whose (1-)morphisms are finite étale Q-
morphisms. Then the 2-category LocQ(X ) is slim. Write: LocQ(X ) def= |LocQ(X )|.

(iii) The 2-category LocQ(X ) (respectively, category LocQ(X )) may be recon-
structed entirely category-theoretically from LocQ(X ) (respectively, LocQ(X ))
by considering the “2-category (respectively, category) of objects of LocQ(X ) (re-
spectively, LocQ(X )) equipped with a finite étale equivalence relation”.

(iv) Suppose that we arbitrarily choose finite étale structure morphisms to
X for all of the objects of LocQ(X ). Then every morphism Y1 → Y2 of LocQ(X )
may be written as the composite of an isomorphism Y1

∼→ Y3 (over Q) with a
finite étale morphism Y3 → Y2 over X .

Let X be a Q-anabelioid. Then:

Definition 2.2.3.

(i) We shall say that X is a Q-core if X [i.e., X → Q] is a terminal object in
LocQ(X ).

(ii) We shall say that X admits a Q-core if there exists a terminal object Z in
LocQ(X ). In this case, LocQ(X ) = LocQ(Z) = LocQ(Z), so we shall say that Z is
a Q-core.

Definition 2.2.4.

(i) We shall say that a closed subgroup H ⊆ G of a profinite group G is
commensurably (respectively, normally) terminal if the commensurator CG(H) (re-
spectively, normalizer NG(H)) is equal to H.
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(ii) We shall say that a π1-monomorphism of anabelioids U → V is commen-
surably (respectively, normally) terminal if the image of the induced morphism
between fundamental groups of corresponding connected components of U , V is
commensurably (respectively, normally) terminal.

Remark 2.2.4.1. Thus, it is a formal consequence of the definitions that:

commensurably terminal =⇒ normally terminal

and that

commensurably terminal with slim domain =⇒ relatively slim

(where the “domain” is the group H (respectively, anabelioid U) in Definition 2.2.4,
(i) (respectively, (ii))).

Proposition 2.2.5. (Commensurable Terminality and Holomorphic
Cores) Let X be a connected faithful Q-anabelioid; assume that Q is also
connected. Then X is a Q-core if and only if its structure morphism is commen-
surably terminal.

Proof. Without loss of generality, we may write X = B(H), Q = B(G), where H ⊆
G is a closed subgroup. First, we verify sufficiency. By Proposition 1.1.4, it suffices
to prove that, if H ′ ⊆ H is an open subgroup, then any continuous homomorphism
φ : H ′ → G whose image lies in H and which factors as the composite of the natural
inclusion H ′ ↪→ G with conjugation by an element g ∈ G is, in fact, equal to the
to composite of the natural inclusion H ′ ↪→ G with conjugation by an element
h ∈ H. But this follows immediately from Definition 2.2.4, (i), which implies that
g ∈ H. Finally, necessity follows by reversing the preceding argument in the evident
fashion. ©

Let X be a connected Q-anabelioid. For simplicity, we also assume that Q
is connected. Suppose that we are given a universal covering Q̃ → Q of Q and
consider the resulting cartesian diagram:

Q̃|X −→ Q̃⏐⏐� ⏐⏐�
X −→ Q

Note that ΠQ
def= AutQ(Q̃) acts (compatibly) on Q̃ over Q, as well as on Q̃|X over

X . On the other hand, if we consider a connected component X̃ of Q̃|X as an
independent geometric object, even if the Q-holomorphic structure on X̃ remains
fixed, in general X̃ will admit distinct (profinite) étale morphisms to X . Put another
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way, in general, X admits distinct X̃ -valued Q-holomorphic basepoints. That is to
say, we have the Q-holomorphic analogue of Proposition 2.1.4:

Proposition 2.2.6. (The Totality of Q-Holomorphic Basepoints) Let X
be a connected faithful Q-anabelioid, where Q is also connected. Let Q̃ → Q be
a universal covering of Q; X̃ → X a connected component of Q̃|X → X . Write
ΠQ

def= AutQ(Q̃), ΠX
def= AutX (X̃ ). Thus, we have a natural inclusion ΠX ⊆ ΠQ.

Then:

(i) The subgroup

ΠX = AutX (X̃ ) ⊆ IsogQ(X ) def= AutQ(X̃ ) = CΠQ(ΠX )

is commensurable with all of its conjugates in IsogQ(X ). Moreover, the open
subgroups of ΠX define a basis for a topology on IsogQ(X ) with respect to which
IsogQ(X ) forms a Hausdorff topological group. Finally, the subgroup ΠX ⊆
IsogQ(X ) (respectively, IsogQ(X ) ⊆ Isog(X )) is both open and closed (respectively,
open) with respect to this topology.

(ii) IsogQ(X ) acts transitively on the set of X̃ -valued Q-holomorphic
basepoints — i.e., (isomorphism classes of) profinite étale Q-morphisms X̃ → X
— of X . Moreover, this action determines a bijection between the set of X̃ -valued
Q-holomorphic basepoints and the coset space:

IsogQ(X )/ΠX

(iii) Suppose that X is a Q-core. Then ΠX = IsogQ(X ). That is to say, X
admits precisely one X̃ -valued Q-holomorphic basepoint. In particular, all “Q-
holomorphic” open paths on X are, in fact, closed. Moreover, the natural functors

Et(X ) → LocQ(X ) → LocQ(X ); Ét(X ) → LocQ(X ) → LocQ(X )

are equivalences.

Remark 2.2.6.1. Thus, at a more intuitive level, just as “(absolute) cores
have essentially only one basepoint”, if X is a Q-core, then every basepoint of Q
determines an essentially unique (up to renaming) Q-holomorphic basepoint of X .

Remark 2.2.6.2. The topology of Proposition 2.2.6, (i), is not to be confused
with the topology on CΠQ(ΠX ) induced by the topology of ΠQ. For instance, if ΠX
is the profinite free group on 2 generators (which is easily seen to be slim — cf.,
e.g., [Mzk8], Lemma 1.3.1) and ΠQ = Aut(ΠX ) (which also has a natural structure
of profinite group), then ΠQ = CΠQ(ΠX ), but ΠX is not open [i.e., relative to the
profinite topology of ΠQ] in ΠQ. Here, we note that Out(ΠX ) = Aut(ΠX )/ΠX ,
hence also ΠQ, is infinite and slim. [Indeed, the slimness of ΠQ may be shown, for
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instance, as follows: By [Tama], Theorem 0.4, applied to the projective line minus
three points over the field of rational numbers, it follows that the centralizer of
any open subgroup of Out(ΠX ) is contained in the subgroup of Out(ΠX ) obtained
by considering the permutation group of the three points. On the other hand, by
projecting to Out(Πab

X ) ∼= GL2(Ẑ), one sees that any element of this permutation
group that centralizes an open subgroup of GL2(Ẑ) must be trivial.]

§2.3. Quasi-Cores and Intrinsic Exhaustivity

In order to define the fundamental group of a (connected slim) anabelioid X ,
it is necessary to choose a basepoint for X . As we saw in Proposition 1.2.8, this
is equivalent to choosing a universal cover X̃ → X of X . On the other hand, in
general, there is nothing special that distinguishes a given profinite étale X̃ → X
from another X̃ → X obtained from the first by composition with some element of
Aut(X̃ ) = Isog(X ). That is to say, the difference between these two X̃ → X is a
“matter of arbitrary choices of labels”. Thus, the question naturally arises:

To what extent is it possible to construct the fundamental group of a (con-
nected slim) anabelioid in a canonical fashion that does not depend on
such arbitrary choices?

In this § and the next, we would like to analyze this issue in more detail. Our main
result (cf. Theorem 2.4.3 below) states that when the anabelioid in question admits
a “faithful quasi-core” (cf. Definition 2.3.1), then its fundamental group can indeed
be constructed in a rather canonical fashion. In addition to quasi-cores, we also
consider the notion of intrinsic exhaustivity, which provides a convenient, intrinsic
necessary condition for an anabelioid to admit a faithful quasi-core.

In the following, we shall always consider morphisms between anabelioids in
the coarsification Anab of Anab.

Definition 2.3.1. Let X be a Q-anabelioid (so X , Q are slim). For simplicity,
we also assume that the fundamental group of every irreducible component of Q is
countably (topologically) generated.

(i) We shall say that X admits (Q as) a quasi-core if the natural functor

LocQ(X ) → Loc(X )

(given by forgetting the Q-holomorphic structure) is an equivalence.

(ii) We shall say that X admits (Q as) a faithful quasi-core if X admits Q as
a quasi-core, and, moreover, the Q-structure on X is faithful.

Next, let us recall that if G is a slim profinite group, then it admits a natural
injection

G ↪→ Isog(G) def= Isog(B(G))
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(cf. Propositions 1.2.8, (iv); 2.1.4, (i)). Thus, in the following discussion, we shall
regard G as a subgroup of Isog(G).

Definition 2.3.2. We shall refer to as a profinite subgroup K ⊆ Isog(G) a sub-
group K of the abstract group Isog(G) which is equipped with a structure of profinite
group such that the intersection K

⋂
G is a closed subgroup of both G and K

whose induced topologies from G and K coincide.

Remark 2.3.2.1. If K ⊆ Isog(G) is a profinite subgroup which is, moreover,
commensurable to a closed subgroup F ⊆ G (i.e., K

⋂
F is open in F , K), then

one verifies easily that the topology on K is the unique topology with respect to
which K ⊆ Isog(G) is a profinite subgroup.

Remark 2.3.2.2. One verifies immediately that if G′ ⊆ Isog(G) is a profinite
subgroup commensurable to G — so that one has a natural identification Isog(G) =
Isog(G′) — then the profinite subgroups of Isog(G) are the same (relative to this
identification) as the profinite subgroups of Isog(G′).

We will also make use of the following definitions:

Definition 2.3.3.

(i) A profinite group G will be called weakly intrinsically exhaustive if for every
open subgroup H ⊆ G and every open embedding ι : H ↪→ G, we have:

[G : H] = [G : ι(H)]

(ii) A slim profinite group G will be called intrinsically exhaustive if there exists
a filtration

. . . ⊆ Gn+1 ⊆ Gn ⊆ . . . ⊆ G

(where n ranges over the positive integers) of open normal subgroups Gn of G such
that ⋂

n

Gn = {1}

and, moreover, for any profinite subgroup K ⊆ Isog(G) commensurable to G, there
exists an integer nK — depending only on the profinite subgroup K — such that
Gn ⊆ K for n ≥ nK , and, for any open subgroup H ⊆ Gn (where n ≥ nK) and
any open embedding ι : H ↪→ K, we have ι(H) ⊆ Gn (⊆ K).

(ii) An anabelioid will be called intrinsically exhaustive (respectively, weakly
intrinsically exhaustive) if the fundamental group of every connected component of
the anabelioid is intrinsically exhaustive (respectively, weakly intrinsically exhaus-
tive).

Definition 2.3.4. Let X be a Q-anabelioid. Then we shall refer to a finite étale
(necessarily Galois) covering Y → X obtained as the direct summand of the pull-
back via the structure morphism X → Q of a finite étale Galois covering R → Q
as Q-Galois.
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Proposition 2.3.5. (Basic Properties of Quasi-Cores and Intrinsic Ex-
haustivity)

(i) Suppose that a slim anabelioid X admits a quasi-core X → Q. Then the
natural functor

LocQ(X ) → Loc(X )

(given by forgetting the Q-holomorphic structure) is an equivalence. Moreover, any
relatively slim composite X → Q′ of X → Q with a morphism Q → Q′ of slim
anabelioids is also a quasi-core for X .

(ii) If a slim anabelioid X admits a core X → Q, then X → Q is a faithful
quasi-core for X .

(iii) Suppose that X and Y are slim, connected anabelioids which are isoge-
nous. Then X admits a quasi-core (respectively, admits a faithful quasi-core) if
and only if Y does.

(iv) Suppose that X and Y are slim, connected anabelioids which are isoge-
nous. Then X is intrinsically exhaustive (respectively, weakly intrinsically exhaus-
tive) if and only if Y is.

(v) If X is intrinsically exhaustive, then it is weakly intrinsically exhaustive.

(vi) Suppose that X is weakly intrinsically exhaustive. Then there is a
unique map

degX : Ob(Loc(X )) → Q>0

such that
degX (X ) = 1; deg(Y1/Y2) = degX (Y1)/degX (Y2)

for all morphisms Y1 → Y2 of Loc(X ). In particular, if Y → X is a finite étale
morphism of connected anabelioids of degree > 1, then Y is not isomorphic to X .

(vii) Let X be a slim, connected, weakly intrinsically exhaustive anabelioid
that admits a quasi-core X → Q. Let

φ : Y → X

be a connected Q-Galois covering. Then any finite étale (not necessarily Galois!)
morphism ψ : Y → X is abstractly equivalent (cf. §0) to φ.

(viii) If X admits a faithful quasi-core, then X is intrinsically exhaustive.
In particular, if X admits a core, then X is intrinsically exhaustive.

Proof. Assertions (i), (ii), (iv), and (vi) are immediate from the definitions. As-
sertion (iii) follows from the definitions and assertion (i). Next, we verify assertion
(v). Let H ⊆ G be an open subgroup, and ι : H ↪→ G be an open embedding.
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Suppose that (for some large n) Gn (as in Definition 2.3.3) is contained in H, so
ι(Gn) ⊆ Gn. Then:

∞ > [G : ι(H)] · [H : Gn] = [G : ι(H)] · [ι(H) : ι(Gn)]

= [G : ι(Gn)] = [G : Gn] · [Gn : ι(Gn)]

≥ [G : Gn] = [G : H] · [H : Gn]

Thus, [G : ι(H)] ≥ [G : H]. On the other hand, if we apply this inequality to
ι−1 : ι(H) ↪→ G, then we obtain the reverse inequality. This implies equality, as
desired.

Next, we turn to assertion (vii). Suppose that X → Q is a quasi-core for X .
Without loss of generality, we may assume that X = B(G), Q = B(A), and that
X → Q is induced by a continuous homomorphism G → A which factors:

G � GA ⊆ A

If B ⊆ A is an open normal subgroup of A, and HA
def= GA

⋂
B, H

def= G ×A B,
then for any open embedding ι : H ↪→ G, it follows from Definition 2.3.1, (i),
that the image of the composite of ι with the homomorphism G → A is equal to
a · HA · a−1 (for some element a ∈ A). Thus, since B is normal in A, we conclude
that a · HA · a−1 ⊆ GA

⋂
B = HA (for some a ∈ A). On the other hand, this

implies that ι factors through H, hence — by assertion (vi) — that ι(H) = H, as
desired.

Finally, we turn to assertion (viii). Suppose that X → Q is a faithful quasi-
core for X . Without loss of generality, we may assume that X = B(G), Q = B(A),
where G ⊆ A is a closed subgroup of a profinite group A. Let

. . . ⊆ An+1 ⊆ An ⊆ . . . ⊆ A

(where n ranges over the positive integers) be a descending sequence of open normal
subgroups of A (which exists since A is assumed to be countably (topologically)
generated — cf. Definition 2.3.1) such that:⋂

n

An = {1}

Let Gn
def= G

⋂
An. Then for any profinite subgroup K ⊆ Isog(G) commensurable

to G, it follows from assertion (i) that K
⋂

G ⊆ G ⊆ A extends uniquely to
an inclusion K ⊆ A. Now take nK to be sufficiently large that Gn = Kn

def=
K

⋂
An (⊆ K), for all n ≥ nK . Then for any open subgroup H ⊆ Gn (where

n ≥ nK) and any open embedding ι : H ↪→ K, it follows from Definition 2.3.1, (i),
that the composite of ι with the inclusion K ⊆ A is induced by conjugation by an
element a ∈ A. Thus, (since An is normal in A) we obtain the desired inclusion:

ι(H) = a · H · a−1 ⊆ K
⋂

An = Kn = Gn
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©

Remark 2.3.5.1. Thus, in words (cf. Definition 2.3.3; Proposition 2.3.5, (vi)),
weak intrinsic exhaustivity means, with respect to finite étale localization on B(G),
that:

The property of “being sufficiently local as to be finite étale over B(G) of
degree N” is intrinsic.

On the other hand, intrinsic exhaustivity means that:

The property of “being sufficiently local as to be finite étale over B(Gn)”
is intrinsic.

Moreover, we have implications (cf. Proposition 2.3.5, (v), (viii)):

existence of a faithful quasi-core =⇒ intrinsic exhaustivity
=⇒ weak intrinsic exhaustivity

Here, the second implication is strict (cf. Example 2.3.7, (ii), (iii), below), but it is
not clear to the author at the time of writing to what extent the first implication
is strict (but cf. Theorem 3.1.3, (iii); Corollary 3.1.7).

Proposition 2.3.6. (Quasi-Cores and the Group of Isogenies) Let G be a
slim profinite group.

(i) Suppose that Isog(G) is profinite (i.e., “Isog(G) ⊆ Isog(G) is a profinite
subgroup” — cf. Definition 2.3.2). Then B(G) → B(Isog(G)) is a quasi-core.

(ii) Suppose that G is intrinsically exhaustive; let {Gn} be as in Definition
2.3.3, (ii). Then the natural inclusions . . . ⊆ Aut(Gn) ⊆ Aut(Gn+1) ⊆ . . . ⊆
Isog(G) (where n ≥ nG) induce an isomorphism of abstract groups:

lim−→
n

Aut(Gn)
∼→ Isog(G)

(iii) Suppose that G is a closed subgroup of a slim profinite group A such
that the inclusion G ↪→ A is relatively slim. Then the following are equivalent:

(a) B(G) → B(A) is a faithful quasi-core.

(b) The natural inclusion CA(G) ↪→ Isog(G) is surjective.

(c) The homomorphism of abstract groups G ↪→ A factors through G ↪→
Isog(G).
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Proof. These assertions are all formal consequences of the definitions. ©

Remark 2.3.6.1. Relative to Proposition 2.3.6, (ii), we note that Aut(Gn) is also
equal to the normalizer of Gn in Isog(G). When G (hence also the Gn) is topo-
logically finitely generated, then it follows that G admits an exhaustive descending
sequence of characteristic open subgroups . . . ⊆ Hm ⊆ . . . ⊆ G, hence that Aut(G)
(hence also the Gn) admits a natural structure of profinite group (by considering
the inverse limit of the images of Aut(G) in the various Aut(G/Hm)). On the other
hand, this profinite topology on Aut(Gn) does not, in general, coincide with the
topology induced by the topology of Isog(G) discussed in Proposition 2.1.4, (i) —
cf. Remark 2.2.6.2. Moreover, (relative to Proposition 2.3.6, (ii)) the work of [TSH]
— involving inductive limits of topological groups whose inductive limit topology
(in the category of topology spaces) is not necessarily compatible with the group
structure of the inductive limit — shows that the topology of inductive limits of
topological groups can, in general, be a rather subtle issue.

Remark 2.3.6.2. The observations given in Proposition 2.3.6, (i), (iii); Remark
2.3.6.1 were related to the author by A. Tamagawa.

Example 2.3.7. Non-Intrinsically Exhaustive Profinite Groups. Let p
be a prime number.

(i) Take A
def= Zp

×, B
def= Zp. Let A act on B in the usual fashion. Take

G
def= B � A. Note that G is slim. Then the open subgroup

H
def= (p · B) � A ⊆ G

is clearly isomorphic to G, hence violates Proposition 2.3.5, (vi). Thus, G fails to
be weakly intrinsically exhaustive.

(ii) Let G
def= PGL2(Zp). Note that G is slim. For m a positive integer, write

Cm ⊆ G for the subgroup determined by the matrices congruent to the identity
matrix modulo pm. Then G fails to be intrinsically exhaustive. Indeed, if {Gn} is
as in Definition 2.3.3, then there exist positive integers m ≥ n ≥ nG such that:

Cm ⊆ Gn ⊆ C1

Thus, for all open embeddings ι : Cm ↪→ G, we should have: ι(Cm) ⊆ C1. But this
inclusion fails to hold if we take ι to be the embedding given by conjugation by

the matrix

(
pm 0

0 1

)
. On the other hand, (it is an easy exercise to show that) in

this case, the unimodularity of the action by conjugation of GL2(Qp) on M2(Qp)
implies that G is weakly intrinsically exhaustive.

(iii) For n ≥ 2, let G
def= F̂n, the free profinite group on n generators. Then G

is slim (cf., e.g., [Naka], Corollary 1.3.4; [Mzk8], Lemma 1.3.1). Moreover, since,
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for any n,m ≥ 2, F̂n, F̂m admit isomorphic open subgroups, in order to prove
that G is not intrinsically exhaustive for all n, it suffices to prove that G fails to
be intrinsically exhaustive for some n (cf. Proposition 2.3.5, (iv)). On the other
hand, there exists an n such that G is isomorphic to an open subgroup of the
profinite completion SL2(Z)∧ of SL2(Z). Thus, one may show that to assume the
intrinsic exhaustivity of any open subgroup of such a G leads to a contradiction
by conjugating by “Hecke operator-type matrices” — an operation which preserves
the quotient SL2(Z)∧ � SL2(Zp) — as in (ii), above. Note, however, that in this
case, the Nielsen-Schreier formula (cf., e.g., [FJ], Proposition 15.25) implies that
G is weakly intrinsically exhaustive.

(iv) The anabelioid Ét(A1
Fp

) (notation as in Example 1.1.3) associated to the
affine line over Fp fails to be weakly intrinsically exhaustive. Indeed, the existence
of the finite étale morphism A1

Fp
→ A1

Fp
defined by

T �→ T p + T

(where T is the standard coordinate on A1
Fp

) contradicts Proposition 2.3.5, (vi).

(v) If K is a finite extension of Qp, then the associated anabelioid Ét(K) is
weakly intrinsically exhaustive (cf., e.g., [Mzk5], Proposition 1.2), but fails to be
intrinsically exhaustive, at least when p > 2. Indeed, to see that GK (the absolute
Galois group of K) fails to be intrinsically exhaustive, let us first recall the following
theorem of [JR]:

Let K1, K2 be finite extensions of Qp (where p > 2) which contain the
roots of unity of order p. Then GK1

∼→ GK2 if and only if [K1 : Qp] =
[K2 : Qp] and K1

⋂
(Qp

ab) = K2

⋂
(Qp

ab) (where Qp
ab is the maximal

abelian extension of Qp).

Now suppose that {Gn} is a sequence of open normal subgroups of GK as in Def-
inition 2.3.3, (ii). Without loss of generality (cf. Proposition 2.3.5, (iv)), we may
assume that K contains the roots of unity of order p, and that [K : Qp] ≥ 3. Let
L be the finite Galois extension of K corresponding to some Gn. Write M ⊆ L
for the maximal tamely ramified subextension of L over K. By taking n to be suf-
ficiently large, we may assume that the extension L of M is not cyclotomic, i.e.,
that L �= L

⋂
(M · Qp

ab). Since [M : Qp] ≥ [K : Qp] ≥ 3, it thus follows from
local class field theory (cf., e.g., [Serre3]) that the wild inertia subgroup of Gab

M has
rank ≥ 3 over Zp, hence that there exists a wildly ramified abelian extension L′ of
M such that:

[L′ : M ] = [L : M ]; L′ �= L; L′ ⋂
(M · Qp

ab) = L
⋂

(M · Qp
ab)

Thus, (by the theorem of [JR] quoted above) we conclude that GL′
∼→ GL = Gn

despite the fact that GL′ �= GL. But this contradicts Definition 2.3.3, (ii).

Remark 2.3.7.1. Examples (iv) and (v) were related to the author by A.
Tamagawa.
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§2.4. Canonical Construction of the Fundamental Group

Let X be a slim, connected anabelioid. In this §, we would like to examine the
extent to which the fundamental group of X may be constructed in a canonical
fashion, independent of a choice of basepoint.

We begin by introducing some notation. Let us write

Locbp(X )

for the category each of whose objects is an arrow U → Y, where Y is a connected
object of Loc(X ), and U → Y is a universal covering of Y (cf. Definition 1.2.7),
and whose morphisms from an arrow U1 → Y1 to an arrow U2 → Y2 are pairs of
arrows αU : U1

∼→ U2, αY : Y1 → Y2 such that the diagram

U1
αU−→ U2⏐⏐� ⏐⏐�

Y1
αY−→ Y2

commutes; αU is an isomorphism; and αY is finite étale. Thus, in particular, by
mapping U → Y to Y, we obtain a functor

ΦX : Locbp(X ) → Loc(X )0

— where the superscript “0” is to denote the full subcategory consisting of con-
nected objects — which (by definition) is surjective on objects.

On the other hand, if we define

SGp

to be the category whose objects are pairs (G,H), where G is a group, and H is
a subgroup of G, and whose morphisms from (G1,H1) to (G2,H2) are homomor-
phisms φ : G1 → G2 such that φ(H1) ⊆ H2, then we obtain a natural functor

ΨX : Locbp(X ) → SGp

by mapping an arrow U → Y to the pair

(Aut(U),AutY(U) ⊆ Aut(U))

and a morphism from U1 → Y1 to U2 → Y2 to the isomorphism Aut(U1)
∼→ Aut(U2).

Thus:

Locbp(X ) may be thought of as the “category of objects of Loc(X ) equipped
with a basepoint” and ΨX may be thought of as the standard construction
of the fundamental group (in the presence of a basepoint).
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When it is necessary to specify the universe V relative to which we are working
— i.e., relative to which we take all of our (pro-)anabelioids (respectively, groups)
to be V -small (respectively, V -sets) — we shall write LocVbp(X ), LocV (X ) (respec-
tively, SGpV ). [Similarly, we shall write ΦVX , ΨV

X .] Thus, we observe, in particular,
that the categories LocVbp(X ), LocV (X ) are not V -small.

Proposition 2.4.1. (Dependence of the Fundamental Group on the
Choice of Universal Covering) Let V be a universe [which is, therefore, in
particular, a “set” in some ambient model of set theory]. Let X be a V -small slim,
connected anabelioid such that the subgroup ΠX ⊆ Isog(X ) (cf. Proposition 2.1.4,
(i)) is not normal. Then there exist distinct objects of LocVbp(X ) that map via
ΦVX to the same object of LocV (X )0, but via ΨV

X to distinct objects of SGpV . In
particular, the functor ΨV

X does not factor through ΦVX .

Proof. Indeed, let π : X̃ → X be a universal covering; let α ∈ Aut(X̃ ) be an
element that does not normalize ΠX

def= AutX (X̃ ). Then π′ def= π ◦ α−1 is also a
universal covering of X . Moreover, we have

ΨV
X (π) = (Aut(X̃ ),ΠX ) �= ΨV

X (π′) = (Aut(X̃ ), α · ΠX · α−1)

but ΦVX (π) = ΦVX (π′) = X . ©

Remark 2.4.1.1. Thus, the proof of Proposition 2.4.1 suggests, in particular,
that, in order to obtain a factorization of ΨV

X through ΦVX — i.e., to obtain a
“canonical construction” of the fundamental group that does not depend on the
choice of basepoint — it is necessary to modify ΨV

X so that it takes values in
some sort of “quotient” in which subgroups of Aut(X̃ ) are identified with their
conjugates. This motivates the following discussion.

Let V , X be as in Proposition 2.4.1. Then let us denote by

SGpVX

the category each of whose objects is an assignment A

U �→ AU

— where U ranges over all V -small universal coverings of X [i.e., all domains of
arrows in Locbp(X )], and AU is a collection of subgroups of Aut(U) — such that
for every isomorphism U1

∼→ U2, the induced isomorphism Aut(U1)
∼→ Aut(U2)

maps AU1 onto AU2 ; and whose morphisms Hom(A,A′) are defined as follows: The
cardinality of Hom(A,A′) is always ≤ 1; we take the cardinality of Hom(A,A′) to
be 1 if and only if the following condition is satisfied: for every U , every H ∈ AU ,
there exists an H ′ ∈ A′

U such that H ⊆ H ′. Note that this category SGpVX is not
V -small.
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Thus, we obtain a natural functor

Ξ̃VX : LocVbp(X ) → SGpVX

by mapping an arrow U → Y to the assignment that maps a universal covering V to
the conjugacy class of subgroups of Aut(V) determined by the subgroup AutY(U) ⊆
Aut(U) and an isomorphism Aut(U) ∼→ Aut(V) which is induced by an isomorphism
U ∼→ V . [Note that this conjugacy class is independent of the choice of isomorphism
U ∼→ V .] Moreover, it is evident from the definition of Ξ̃VX that:

Theorem 2.4.2. (Canonical Fundamental Groups up to Isogeny) Let V ,
X be as in Proposition 2.4.1. Then there exists a functor

ΞVX : LocV (X )0 → SGpVX

such that ΞVX = Ξ̃VX ◦ ΦVX .

Remark 2.4.2.1. Thus, the functor of Theorem 2.4.2 yields a functorial [i.e., with
respect to finite étale coverings] construction of the fundamental group as a group
of transformations of some geometric object [i.e., the universal covering], albeit up
to a certain indeterminacy, given by the action of Isog(X ). On the other hand,
this functor has the drawback that it only constructs the fundamental group as an
“abstract group”, i.e., not as a profinite group, as one might ideally wish.

Now let us assume that X is a connected Q-anabelioid. For simplicity, we
assume that Q is also connected. In the following discussion, we would like to show
that (certain quotients) of the fundamental group of X may be constructed in a
very canonical fashion complete with their profinite structure, under the assumption
that X → Q is a quasi-core for X .

First, let us choose an explicit system of finite étale Galois coverings

. . . → Qn+1 → Qn → . . . → Q

of Q which, when regarded as a pro-anabelioid Q∞, forms a universal covering of
Q. For each n, choose a coherent system of connected components

Xn ↪→ Qn|X

of Qn|X (cf. the proof of Proposition 2.3.5, (viii)). This system thus defines a
pro-anabelioid X∞, together with a morphism X∞ → Q∞.

Now observe that, since X → Q is a quasi-core, it follows that any automor-
phism α : Xn ∼→ Xn necessarily lies over Q, hence that the natural morphism

Xn → Qn
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[obtained by composing the inclusion Xn ↪→ Qn|X with the projection Qn|X → Qn]
is preserved by composition on the the left with arbitrary automorphisms of Xn,
up to the action of a (unique) element of Gal(Qn/Q) def= AutQ(Qn). That is to
say, there is a unique element αQn ∈ Gal(Qn/Q) for which the following diagram
commutes: Xn → Qn⏐⏐�α ⏐⏐�αQn

Xn → Qn

Moreover, the uniqueness of this element implies that the assignment α �→ αQn is a
homomorphism. Thus, in summary, we see that we obtain an outer homomorphism

ρAut
n : Aut(Xn) → Gal(Qn/Q)

which is entirely determined (as an outer homomorphism) by the isomorphism class
of Xn. In particular, restricting to Gal(Xn/X ) ⊆ Aut(Xn), we obtain an outer
homomorphism

ρGal
n : Gal(Xn/X ) → Gal(Qn/Q)

which is entirely determined (as an outer homomorphism) by the abstract equiv-
alence class of the morphism Xn → X , hence, in particular, by the isomorphism
class of X plus the covering Qn → Q (since X → Q is a quasi-core).

Since the above construction is clearly “functorial in n”, by passing to the limit
over n, we thus obtain an outer homomorphism

ρGal
∞ : Gal(X∞/X ) → ΠQ

def= Gal(Q∞/Q)

whose image is entirely determined (up to conjugacy) by the isomorphism class of
X . Let us denote this image (well-defined up to conjugacy) by:

ΠX/Q ⊆ ΠQ

Moreover, since the above construction is determined entirely by the isomorphism
class of X , it follows (cf. Proposition 2.1.1, (iv)) that the assignment X �→ ΠX/Q
is functorial with respect to finite étale coverings X1 → X2 of connected objects of
Loc(X ) in the sense that such a covering induces an inclusion

ΠX1/Q ⊆ ΠX2/Q (⊆ ΠQ)

which is well-defined up to conjugation by elements of ΠQ. (That is to say, one
allows an indeterminacy with respect to distinguishing between, say, a given inclu-
sion ΠX1/Q ⊆ ΠX2/Q and some other inclusion ΠX1/Q ⊆ π · ΠX2/Q · π−1, where
π ∈ ΠQ.)

If G is a Hausdorff topological group, then let us write

Sub(G)
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for the category whose objects are conjugacy classes of closed subgroups H ⊆ G,
and whose morphisms H → H ′ are inclusions of H into a (conjugate of) H ′. That
is to say, the cardinality of the set of morphisms between two objects of Sub(G) is
either 0 or 1.

Then the above discussion may be summarized as follows:

Theorem 2.4.3. (Canonically Constructed Fundamental Groups via
Quasi-Cores) Let Q be a slim, connected anabelioid. Suppose that X is a connected
Q-anabelioid for which X → Q is a quasi-core. Then there is a functor

Loc(X )0 → Sub(ΠQ)

Y �→ {ΠY/Q ⊆ ΠQ}
such that B(ΠY/Q) is isomorphic to the image of Y in Q (cf. Definition 1.1.7). In
particular, if X → Q is a faithful quasi-core, then Y ∼= B(ΠY/Q).

Remark 2.4.3.1. Thus, Theorem 2.4.3 yields a canonical construction of
the fundamental group of a slim, connected X which admits a faithful quasi-core
Q. Moreover, this construction has the virtue that it is compatible [cf. the above
discussion!] with the profinite structure of the fundamental group of X . That is
to say, more concretely:

The functor of Theorem 2.4.3 may be written as an inverse limit of a
compatible system of functors to the categories

Sub(ΠQ/Hn)

where . . . ⊆ Hn ⊆ . . . ⊆ ΠQ is an exhaustive descending sequence of open
normal subgroups of ΠQ.

This compatibility with the profinite structure is closely related to the the intrin-
sicity of “knowing how local one is” (cf. Remark 2.3.5.1).

On the other hand, one drawback of the construction of Theorem 2.4.3 is that
it depends on the arbitrary choice of a universal covering Q∞ → Q for Q as an
“input datum”. This motivates the following definition:

Definition 2.4.4. Let X be a slim, connected anabelioid. Then we shall refer to
a closed subgroup Δ ⊆ ΠX , considered as a subgroup of Isog(X ), as an intrinsic
profinite subgroup if it is topologically finitely generated, normal in Isog(X ), and,
moreover, the continuous inclusion of Hausdorff topological groups Δ ↪→ Isog(X )
is relatively slim.

Remark 2.4.4.1. Note that since Δ is topologically finitely generated, it follows
(cf. Remark 2.3.6.1) that Aut(Δ) has a natural structure of profinite group.
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Proposition 2.4.5. (The Faithful Quasi-Core Associated to an Intrinsic
Profinite Subgroup) Let Δ ⊆ Isog(X ) be an intrinsic profinite subgroup.
Then the action by conjugation of ΠX on Δ yields a morphism

X ∼= B(ΠX ) → B(Aut(Δ))

which is a faithful quasi-core for X .

Proof. Indeed, this is a formal consequence of Proposition 2.3.6, (iii), (a) ⇐⇒ (c).
©

Remark 2.4.5.1. Thus, when the quasi-core of Theorem 2.4.3 is obtained as in
Proposition 2.4.5, one can replace the functor of Theorem 2.4.3 by a functor in the
style of Proposition 2.4.2: That is to say, instead of considering a conjugacy class
of subgroups of a particular profinite group ΠQ, we observe that for any universal
covering U , we obtain a natural profinite subgroup

ΔU ⊆ Aut(U)

(determined by conjugating Δ by some isomorphism U ∼→ X̃ of U to the universal
covering X̃ used to define Isog(X )) such that any isomorphism U1

∼→ U2 maps ΔU1

to ΔU2. In particular, we obtain an assignment

U �→ AU
def= Aut(ΔU )

which is functorial in isomorphisms U1
∼→ U2. Then instead of obtaining a con-

jugacy class of subgroups [as in Theorem 2.4.3] in a particular ΠQ, we obtain a
conjugacy class of subgroups of AU , for each U , which is compatible with all iso-
morphisms U1

∼→ U2. [We leave the routine details to the reader.] At any rate, this
yields a construction of the canonical fundamental groups of Theorem 2.4.3 which
is independent of the choice of any universal covering of Q.
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Section 3: Anabelioids Arising from Hyperbolic Curves

§3.1. Anabelioid-Theoretic Interpretation of Scheme-Theoretic Cores

In the following discussion, we wish to translate the scheme-theoretic theory
of cores in the context of hyperbolic curves (cf. [Mzk9], §2) into the language
of anabelioids (cf. the profinite group-theoretic approach to such a translation
given in [Mzk9], §2). The main technical tool that will enable us to do this is the
“Grothendieck Conjecture” — i.e., Theorem A of [Mzk6].

For i = 1, 2, let Fi be either Q or Qpi (for some prime number pi). Let Ki be a
finite extension of Fi. Let (Xi)Ki be a hyperbolic orbicurve over Ki. Assume that
we have chosen basepoints of the (Xi)Ki , which thus induce basepoints/algebraic
closures Ki of the Ki and determine fundamental groups Π(Xi)Ki

def= π1((Xi)Ki) and

Galois groups GKi

def= Gal(Ki/Ki). Thus, for i = 1, 2, we have an exact sequence:

1 → ΔXi → Π(Xi)Ki
→ GKi → 1

(where ΔXi ⊆ Π(Xi)Ki
is defined so as to make the sequence exact). Here, we

shall think of GKi as a quotient of Π(Xi)Ki
(i.e., not as an independent group to

which Π(Xi)Ki
happens to surject). One knows (cf. [Mzk8], Lemma 1.3.8) that this

quotient Π(Xi)Ki
→ GKi is an intrinsic invariant of the profinite group Π(Xi)Ki

.

Next, we would like to introduce anabelioids into our discussion. Write:

Xi def= Ét((Xi)Ki); Si def= Ét(Ki)

Note that Xi, Si are slim (cf. [Mzk8], Theorem 1.1.1, (ii); [Mzk8], Lemma 1.3.1),
and that the structure morphisms Xi → Si are relatively slim (cf. [Mzk8], Theorem
1.1.1, (ii)). Thus, we may think of Xi as an Si-anabelioid (cf. §2.2). In particular,
we may consider the categories

LocSi(Xi); LocSi(Xi)
of §2.2. In the following discussion, we shall work with anabelioids “at the coarsified
level” [i.e., in Anab].

Corollary 3.1.1. (Anabelioid-Theoretic Preservation of Arithmetic
Quotients) Any finite étale morphism

α : X1 → X2

induces a commutative diagram

X1
α−→ X2⏐⏐� ⏐⏐�

S1
αS−→ S2
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(where the horizontal morphisms are finite étale), hence pull-back

LocS2 (X2) → LocS1 (X2 ×S2 S1); LocS2(X2) → LocS1(X2 ×S2 S1)

and extension functors

LocS1 (X1) ↪→ LocS1(X2 ×S2 S1); LocS1(X1)
∼→ LocS1(X2 ×S2 S1)

which are equivalences whenever α is an isomorphism. Here, the extension functor
on “Loc(−)’s” (respectively, “Loc(−)’s”) is a full embedding (respectively, equiva-
lence).

Proof. Indeed, this is a formal consequence of [Mzk8], Lemma 1.3.8 (and Propo-
sition 2.2.2, (iv)). ©

Theorem 3.1.2. (Anabelioid-Theoreticity of Correspondences) Let K
be a finite extension of Qp or Q; XK a hyperbolic orbicurve over K; write

X def= Ét(XK), S def= Ét(K). Then the natural functor

LocK(XK) −→ LocS(X )

Z �→ Ét(Z)

(defined by applying “Ét(−)”) is an equivalence of categories. A similar asser-
tion holds for “Loc(−)” replaced by “Loc(−)”. In particular, XK is (respectively,
admits) a K-core if and only if X is (respectively, admits) an S-core.

Proof. Since “Loc(−)” may be categorically reconstructed from “Loc(−)” via
the same recipe for both schemes and anabelioids, it suffices to prove the asserted
equivalence in the case of “Loc(−)”.

In this case, it is immediate from the definitions that the functor in question is
essentially surjective. It follows from the injectivity of [Mzk6], Theorem A (cf. also
Proposition 1.1.4) that this functor is faithful. Thus, it suffices to prove that this
functor is full. Since “fullness” follows from Proposition 1.2.5, (ii), for morphisms
over X , it suffices (by Proposition 2.2.2, (iv)) to prove that every S-isomorphism

Y ∼→ Z

(where Y, Z are anabelioids representing objects of LocS(X )) arises from a mor-
phism of schemes in LocK(XK). But this is a formal consequence of [Mzk6], The-
orem A (cf. also Proposition 1.1.4). ©

Theorem 3.1.3. (Absolute Cores over Number Fields) Let K be a num-
ber field; XK a hyperbolic orbicurve over K; write X def= Ét(XK). Then:



48 SHINICHI MOCHIZUKI*

(i) XK is an [absolute] core if and only if XK is a K-core, and, moreover, K
is a minimal field of definition for XK.

(ii) Applying “Ét(−)” induces an equivalence of categories:

Loc(XK) ∼→ Loc(X )

In particular, X is (respectively, admits) an [absolute] core if and only if XK is
(respectively, admits) an [absolute] core.

(iii) Suppose that XK is non-proper. Then X admits a core if and only if
it is intrinsically exhaustive.

Proof. Assertion (i) follows formally from [Mzk9], Definition 2.1 and [Mzk9],
Remark 2.1.1. Assertion (ii) follows, in light of [Mzk8], Theorem 1.1.3, by the same
argument as that used to prove Theorem 3.1.2. To prove assertion (iii), let us recall
from the theory of [Mzk3] (cf. [Mzk9], Remark 2.1.2) that XK [or, equivalently, by
assertion (ii), X ] fails to admit a core if and only if XK is isogenous to a Shimura
curve. Since XK is assumed to be non-proper, this Shimura curve may be taken to
be the moduli stack of hemi-elliptic curves (cf. [Take], p. 396, second paragraph).
Thus, if XK fails to admit a core, one may show that X fails to be intrinsically
exhaustive by using Hecke correspondences on the moduli stack of hemi-elliptic
curves, as in Example 2.3.7, (ii), (iii) (cf. Proposition 2.3.5, (iv)). On the other
hand, if X admits a core, then it follows from Proposition 2.3.5, (ii), (viii), that X
is intrinsically exhaustive. ©

Remark 3.1.3.1. One expects that the assumption that XK be non-proper in
Theorem 3.1.3, (iii), is inessential. We made this assumption only to technically
simplify the proof that X fails to be intrinsically exhaustive (when it is assumed
to fail to admit a core). The point of Theorem 3.1.3, (iii), was to give an example
where the existence of a core is equivalent to intrinsic exhaustivity (cf. Remark
2.3.5.1), since this contrasts with the situation that occurs in the p-adic case (cf.
Remark 3.1.6.1, Corollary 3.1.7 below).

Corollary 3.1.4. (Anabelioid-Theoreticity of Cores) Let

α : X1 → X2

be a finite étale morphism. Then:

(i) α induces — in a fashion functorial with respect to α — a pull-back functor

LocK2((X2)K2 ) → LocK1((X1)K1)

which is an equivalence whenever S1 → S2 is an isomorphism, and is equal to
the usual scheme-theoretic pull-back functor whenever α arises from a finite étale
morphism of schemes (X1)K1 → (X2)K2 .
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(ii) (X1)K1 is K1-arithmetic if and only if (X2)K2 is K2-arithmetic. Simi-
larly, if X1 → X2 ×S2 S1 is an isomorphism, then (X1)K1 is a K1-core if and only
if (X2)K2 is a K2-core.

(iii) If a finite étale morphism (X2)K2 → (Z2)K2 to a K2-core (Z2)K2 maps
(via the functor of (i)) to a finite étale morphism (X1)K1 → (Z1)K1 , then (Z1)K1

is a K1-core, and, moreover, the morphism X1 → X2 ×S2 S1 extends uniquely
to a commutative diagram:

X1 → X2 ×S2 S1 → X2⏐⏐� ⏐⏐� ⏐⏐�
Z1

∼→ Z2 ×S2 S1 → Z2

(where Zi def= Ét((Zi)Ki), and the lower horizontal arrow on the left is an isomor-
phism).

Proof. The functor of (i) is obtained by composing the pull-back functor on
“Loc(−)’s” of Corollary 3.1.1 with an inverse to the extension functor on “Loc(−)’s”
of Corollary 3.1.1 (which is an equivalence), and then applying the equivalences of
Theorem 3.1.2 to the domain and codomain of this composite. Assertion (ii) is a
formal consequence of assertion (i); [Mzk9], Definition 2.1; [Mzk9], Remark 2.1.1;
and [Mzk9], Proposition 2.3, (i). To prove assertion (iii), we may assume, for sim-
plicity, (cf. Proposition 2.1.1, (iv)) that S1 → S2 is an isomorphism. Then it follows
that the pull-back functor on “Loc(−)’s” of (i) is an equivalence:

LocK2 ((X2)K2 )
∼→ LocK1((X1)K1 )

Thus, the existence of an extension as in assertion (iii) follows formally by think-
ing of Xi, Zi as subcategories of LocKi((Xi)Ki) (cf. Proposition 1.2.5, (ii)). The
uniqueness of such an extension is a formal consequence of the slimness of Zi. ©

Proposition 3.1.5. (Absolute Degrees) For i = 1, 2, set:

degarith(Xi) def= [Ki : Fi]

and deggeo(Xi) equal to the Euler characteristic of (Xi)Ki . [That is to say,
if (Xi)Ki is a hyperbolic curve of type (gi, ri), then we set deggeo(Xi) equal to
2gi−2+ri; more generally, if (Xi)Ki is only an orbicurve, then we take its deggeo(−)
to be the deggeo(−) of some degree d finite étale covering of (Xi)Ki which is a curve,
divided by d.] Then for any finite étale morphism α : X1 → X2 (which thus induces
a commutative diagram as in Corollary 3.1.1), we have:

deggeo(X1) = deggeo(X2)·(deg(α)/deg(αS)); degarith(X1) = degarith(X2)·deg(αS)

In particular, Xi is weakly intrinsically exhaustive. We shall refer to deggeo(Xi)
(respectively, degarith(Xi)) as the absolute geometric (respectively, absolute
arithmetic) degree of Xi.
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Proof. Indeed, this follows from [Mzk8], Lemma 1.3.9, (for the absolute geometric
degree) and [Mzk8], Proposition 1.2.1, (i), (v) (for the absolute arithmetic degree).
©

Remark 3.1.5.1. Proposition 3.1.5 already suggests the possibility that, under
the further assumption that (Xi)Ki admits a Ki-core, Xi should admit a faithful
quasi-core. In the remainder of the present §, we shall show that this is, in fact, the
case (at least when (Xi)Ki is non-proper) — cf. Theorem 3.1.6 below. In light of
Proposition 2.3.5, (ii); Theorem 3.1.3, (ii), this fact is primarily of interest in the
case where Ki is a p-adic local field (although we shall not assume this to be the
case in the following discussion).

In the following discussion, we would like to assume that:

(a) The hyperbolic orbicurve (Xi)Ki admits a Ki-core (Zi)Ki (where i =
1, 2).

(b) The anabelioids X1, X2 are isogenous.

Choose basepoints for (Zi)Ki , so that we obtain, for i = 1, 2, exact sequences:

1 → ΔZi → Π(Zi)Ki
→ GKi → 1

Write Zi def= Ét((Zi)Ki). Then assumptions (a), (b); Corollary 3.1.4, (iii); and
[Mzk8], Lemma 1.3.9, imply that (Z1)K1 , (Z2)K2 are hyperbolic orbicurves of the
same type (g, �r). Let us choose once and for all a model

Π̂g,	r

of the geometric fundamental group of a hyperbolic orbicurve of type (g, �r) (in char-
acteristic 0). To simplify notation, in the following discussion, we shall simply write
Π̂ for Π̂g,	r .

Thus, we have (noncanonical) isomorphisms Π̂ ∼= ΔZi . Such isomorphisms
induce an outer homomorphism Π(Zi)Ki

→ Aut(Π̂) which is independent (as an
outer homomorphism) of the choice of such isomorphism and, moreover, fits into a
commutative diagram:

1 −→ ΔXi −→ Π(Xi)Ki
−→ GKi −→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −→ ΔZi −→ Π(Zi)Ki
−→ GKi −→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −→ Π̂ −→ Aut(Π̂) −→ Out(Π̂) −→ 1
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Here, we observe that the vertical arrows between the first and second lines are al-
ways injective. If, moreover, (Xi)Ki is non-proper, then the vertical arrows between
the second and third lines are also injective (by the theory of [Mtmo] — cf. [Mzk8],
Theorem 1.3.6). If we then set

Zcom
def= B(Aut(Π̂)) → Mcom

def= B(Out(Π̂))

— i.e., we wish to think of Zcom → Mcom as a sort of “universal combinatorial
model” of Zi → Si — then we obtain a commutative diagram of connected slim
anabelioids Xi −→ Zi −→ Zcom⏐⏐� ⏐⏐� ⏐⏐�

Si id−→ Si −→ Mcom

in which the horizontal arrows are all relatively slim (cf. [Mzk8], Theorem 1.1.1, (ii);
[Mzk8], Lemma 1.3.1; [Mzk6], Theorem A). Next, let us observe that the intrinsic
nature of the anabelioid associated to a geometric core (cf. Corollary 3.1.4, (iii))
implies that the morphism Xi → Zcom is functorial with respect to arbitrary finite
étale morphisms X1 → X2.

Finally, let us observe that Aut(Π̂) (hence also Out(Π̂)) is countably (topo-
logically) generated. Indeed, to show this, it suffices to show the existence of a
descending sequence of open subgroups

. . . ⊆ An+1 ⊆ An ⊆ . . . ⊆ Aut(Π̂)

such that
⋂
n An = {1}. To this end, let us note that Π̂ admits a descending

sequence of open characteristic subgroups

. . . ⊆ Π̂[n + 1] ⊆ Π̂[n] ⊆ . . . ⊆ Aut(Π̂)

such that
⋂
n Π̂[n] = {1}. Thus, if we set

An
def= Ker(Aut(Π̂) → Aut(Π̂/Π̂[n]))

we obtain a sequence {An} with the desired properties.

Thus, in summary, we see that we have proven (most of) the following:

Theorem 3.1.6. (The Quasi-Core Associated to a Geometric Core) Let
K be a finite extension of Qp or Q; XK a hyperbolic orbicurve over K which
admits a K-core ZK of type (g, �r). Write:

X def= Ét(XK); Z def= Ét(ZK); Zcom
def= B(Aut(Π̂g,	r)); Mcom

def= B(Out(Π̂g,	r))

Then:
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(i) ZK determines a Zcom-holomorphic structure X → Zcom on X which is a
quasi-core for X . In particular, the theory of §2.3, 2.4 may be applied to X .

(ii) If XK is non-proper, then this quasi-core is faithful and, moreover,
obtained as the quasi-core associated to an intrinsic profinite subgroup (cf.
Proposition 2.4.5). Finally, if K is a number field which is a minimal field of
definition for ZK , then the morphism Z → Zcom is commensurably terminal.

Proof. It remains only to observe that the final part of (ii) is a formal consequence
of Theorem 3.1.3, (i), (ii); Proposition 2.2.5. ©

Remark 3.1.6.1. In the case of p-adic local fields, one does not expect Z def=
Ét(ZK) to be a core (even if K is a minimal extension of Qp over which ZK is
defined). Nevertheless, Theorem 3.1.6 shows that Z has the interesting property
of being “closer to being a core” than, for instance, PGL2(Qp) (cf. Example 2.3.7,
(ii), (iii); Theorem 3.1.3, (iii); Corollary 3.1.7 below).

Remark 3.1.6.2. Our use of [Mzk8], Theorem 1.3.6 [i.e., the main result of
[Mtmo]] in the above construction of a faithful quasi-core — which (by the the-
ory of §2.4) allows us to construct “canonical fundamental groups”, i.e., to assign
canonical names, or labels (up to conjugacy) to the elements of the funda-
mental group — is reminiscent of the essential idea lying behind the theory of
the Grothendieck-Teichmüller group, which applies this same injectivity to assign
canonical names (up to conjugacy) to the elements of GQ. It is interesting to
note, however, that although this theory of the Grothendieck-Teichmüller group
is typically applied to analyzing GQ, in fact, (by the “Neukirch-Uchida Theorem”
— cf., e.g., [Mzk8], Theorem 1.1.3) the elements of GQ already possess intrinsic,
canonically determined names (up to conjugacy). Thus, the ability to assign
canonically determined names has much greater significance in the case of p-adic
local fields.

Remark 3.1.6.3. Relative to Remark 3.1.6.2, it is also interesting to note that,
just as the theory of §2.4 only applies in the case where the curve in question
admits a geometric core, the theory of the Grothendieck-Teichmüller group centers
around considering not just the projective line minus three points — a curve which
fails to admit a geometric core — but instead a certain system of moduli stacks
of hyperbolic curves, which includes, for instance, the moduli stack of hyperbolic
curves of type (0, 5) which (by [Mzk3], Theorem C) does admit a geometric core.

Finally, we have the following analogue of Theorem 3.1.3, (iii), which is valid
in the local p-adic case as well:

Corollary 3.1.7. (Criteria for the Existence of a Geometric Core) Let
K be a finite extension of Qp or Q; XK a non-proper hyperbolic orbicurve

over K; write X def= Ét(XK). Then the following assertions are equivalent:
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(i) XK admits a K-core.

(ii) X admits a faithful quasi-core.

(iii) X is intrinsically exhaustive.

Proof. This is a formal consequence of Theorem 3.1.6, (i), (ii); Proposition 2.3.5,
(viii); and the existence of Hecke correspondences (cf. the proof of Theorem 3.1.3,
(iii)) when XK does not admit a K-core. ©

Remark 3.1.7.1. The implication (i) =⇒ (iii) of Corollary 3.1.7 (in the p-adic
case) is somewhat surprising in light of Example 2.3.7, (v). That is to say, Corollary
3.1.7 implies that (when XK admits a K-core) the rigidity of Ét(XK) is sufficiently
strong to eliminate the non-intrinsic exhaustivity of Ét(K). In particular, we con-
clude in this case that the natural inclusion

COut(ΔZ)(GK) ↪→ Isog(GK)

fails to be surjective (cf. Propositions 2.3.5, (viii); 2.3.6, (iii)).

§3.2. The Logarithmic Special Fiber via Quasi-Cores

In this §, we interpret the results of [Mzk8], §2, from the point of view of the
theory of quasi-cores — cf. §2.3, 2.4.

Let XK be a hyperbolic curve over a finite extension K of Qp. Denote the ring
of integers (respectively, residue field) of K by OK (respectively, k); also we shall
use notation such as “klog”, “(klog)∼”, as in [Mzk8], §2.

Assume that XK admits a stable model over OK (cf. [Mzk8], §2), as well as
a K-core ZK , and that XK is Galois over ZK . Then we define the stable model of
ZK to be the quotient — in the sense of [log] stacks — of the stable model of XK

by Gal(XK/ZK). Let us denote the logarithmic special fibers of the stable models
of XK , ZK by X log

k , Z log
k , respectively. Write:

X def= Ét(XK); Z def= Ét(ZK)

Also, let us write Zcom for the quasi-core (for X , Z) of Theorem 3.1.6.

Now recall from [Mzk8], the discussion following Remark 2.5.3, the “universal
admissible covering”

X̃ log
k → X log

k

of X log
k determined by the admissible quotient ΠXK � Πadm

XK
. Put another way, this

covering is the composite of all admissible coverings (cf. [Mzk4], §3) of X log
k ×klog
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(klog)∼. In the following discussion, let us denote the category of (disjoint unions
of coverings isomorphic to) subcoverings of this universal admissible covering (re-
spectively, subcoverings of the “geometric universal admissible covering” X̃ log

k →
X log
k ×klog (klog)∼) by:

Étadm(X log
k ) (respectively, Étadm(X log

k ×klog (klog)∼))

To keep the notation simple, we set:

X0
def= Étadm(X log

k ); X 0
def= Étadm(X log

k ×klog (klog)∼)

[so the fundamental group of X0 (respectively, X 0) may be identified with Πadm
XK

(respectively, the geometric portion Δadm
XK

⊆ Πadm
XK

of Πadm
XK

— cf. [Mzk8], §2)].

Similarly, we may construct

Z0
def= Étadm(Z log

k )

[for instance, as the quotient of X0 by the faithful action on X0 of the finite group
Gal(XK/ZK)].

Next, let us write
Q0

for the “anabelioid quotient” of X 0 by the natural action on X 0 by the profinite
group

Aut(Xlog
k ×klog (klog)∼)

[i.e., the group of automorphisms of the abstract log scheme which do not neces-
sarily lie over klog or (klog)∼!]. That is to say, at the level of profinite groups,
the fundamental group of the anabelioid Q0 is the extension of the profinite group
Aut(Xlog

k ×klog (klog)∼) by the [slim! — cf. [Mzk8], Lemma 2.2, (i)] fundamental
group of X 0 determined by the natural outer action of the former profinite group
on the latter. Note that by the definition of “Aut”, the slimness of X 0, and the
slimness of Gal((klog)∼/klog) [cf. [Mzk8], Proposition 1.2.3, (iii)], it follows that Q0

is also slim.

Thus, we have a commutative diagram of natural relatively slim morphisms of
slim, connected anabelioids

X → Z⏐⏐� ⏐⏐�
X0 → Z0 → Q0

in which the horizontal morphisms are all finite étale.
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Theorem 3.2.1. (The Admissible Quotient as Quasi-Core) Assume that
X → Z is Zcom-Galois. Then the morphism

X → Q0

is a quasi-core. In particular, the theory of §2.3, 2.4 may be applied to this
morphism.

Proof. By the functoriality of the anabelioid associated to a geometric core [(cf.
Corollary 3.1.4, (iii)] and our hypothesis that X → Z is Zcom-Galois [cf. Proposi-
tion 2.3.5, (vii)], it follows that it suffices to consider, for K ′ a finite extension of
K, the behavior of automorphisms of the quotient

(ΠX ⊇) ΠXK′ � Πadm
XK′ (⊆ ΠX0)

induced by arbitrary automorphisms of ΠXK′ . By [Mzk8], Theorem 2.7, it follows
that such automorphisms of Πadm

XK′ necessarily arise from automorphisms of the
logarithmic special fiber of XK′ . Thus, we conclude by the definition of Q0 and the
easily verified fact that base-change to totally wildly ramified extensions K ′′ of K ′

does not affect the automorphism group of the logarithmic special fiber. ©

Remark 3.2.1.1. Note that the anabelian nature of the logarithmic special fiber
(i.e., [Mzk8], Theorem 2.7) is applied in Theorem 3.2.1 in a fashion similar to the
way in which the anabelian nature of hyperbolic curves over number fields is applied
in Theorem 3.1.3, (ii).
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